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1 INTRODUCTION

Alfred Tarski was born in Warsaw on January 14th 1902, under the family name of
Tajtelbaum.1 He studied at the University of Warsaw from 1918 to 1924, when he
received his PhD in mathematics. His doctoral dissertation O wyrazie pierwotnym
logistyki (On the primitive term of logistic) was written under the supervision of S.
Lesniewski.2 Appointed Docent in 1926 and later Adjunct Professor, Tarski taught
at the University of Warsaw until 1939. During that year, Tarski visited the US
for a lecture tour, but was prevented from returning to Poland by the outbreak of
war. Between 1939 and 1942 Tarski was at Harvard University, the City College of
New York, and the Institute for Advanced Study in Princeton. In 1942, he was ap-
pointed lecturer in mathematics at the University of California at Berkeley, where
he remained for the rest of his career. He became professor of mathematics there in
1946, when his family joined him from Poland. In 1958, Tarski founded the Group
in Logic and the Methodology of Science. He retired in 1968, though he taught for
several more years, and continued his research throughout his retirement. Tarski
died in Berkeley on October 27th 1983.

Tarski’s work has had an enormous influence on the development of logic and
mathematics over the last eighty years. He broke new ground with his work on
metamathematics and semantics. His methods and results in those fields and many
others — including algebra, geometry, and set theory — have become part of the
fabric of modern logic and mathematics. The very divisions between these various
fields appear somewhat artificial in the light of Tarski’s work.

I have attempted to make this chapter accessible to the non-mathematician
who is familiar with basic logic. I have focussed more on Tarski’s work in logic,
semantics and metamathematics, and less on Tarski’s more purely mathematical
work. Nevertheless, I hope that the reader will come away with a sense of Tarski’s
achievements in each of the many areas to which he contributed. My aim has
been to make this chapter as self-contained as possible. For the reader who wants
to follow out the formal details of a definition or a proof, I have endeavored to

1The family name Tarski was adopted in 1924. There is disagreement in the literature about
Tarski’s birthdate. I have followed Mostowski [Tarski, 1967] and the Encyclopedia Britannica,
but other sources given the year of his birth as 1901 (see, for example, [Hodges, 1986a]).

2The dissertation was submitted in 1923, and the essential part of it was published as the
paper [Tarski, 1923]. An English translation of the paper appears in [Tarski, 1983a].
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provide explanations in footnotes. And where the formal material goes beyond the
scope of this chapter, I have provided further references. I quote often from Tarski,
since it is very hard to improve upon Tarski’s own words — no-one who is familiar
with Tarski’s work can fail to be struck by the clarity of his writing. Works by
Tarski and others are referred to by the last two digits of the year of publication.3

Throughout I have tried to provide some historical context for Tarski’s work and
its significance.

2 METAMATHEMATICS

We turn first to what Tarski initially called the methodology of the deductive sci-
ences — though he later preferred the label “metalogic and metamathematics”,4

and often just used the term “metamathematics”. Its objects of study are theories
of a certain kind — formalized deductive theories. They constitute the subject
matter of metamathematics just as

“spatial entities constitute the subject matter of geometry and animals
that of zoology” [Tarski, 1930d, p. 60].5

One task of metamathematics is to construct its objects of study. The construction
of formalized deductive theories proceeds in accordance with the deductive method.
When we study or advance any science, Tarski says,

“a method would be ideal, if it permitted us to explain the meaning
of every expression occurring in this science and to justify each of its
assertions” [Tarski, 1941a, p. 117]

Tarski points out that this ideal can never be realized — since we must use ex-
pressions to explain the meaning of an expression, we have to take some terms as
primitive, on pain of an infinite regress.

“When we set out to construct a given discipline, we distinguish, first
of all, a certain small group of expressions of this discipline that seems
to us to be immediately understandable; the expressions of this group
we call primitive terms or undefined terms.” (p. 118)

All other expressions are defined via the primitive terms. And we proceed similarly
with the asserted statements of the theory:

3To reduce the number of footnotes, I refer to Tarski’s work parenthetically in the main text.
When the work of Tarski’s from which I am quoting is clear from the context, I provide only a
page number. For a full bibliography of Tarski, including all his papers, abstracts, monographs,
exercises and problems, contributions to discussions, reviews, publications as editor, project
reports and letters, see Givant [1986].

4See [Tarski, 1941a] Introduction to Logic, p. 140.
5Compare this remark in [Tarski, 1941a]: “The methodology of the deductive sciences became

a general science of deductive sciences in an analogous sense as arithmetic is the science of
numbers and geometry is the science of geometrical configurations.” (p. 138)
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“Some of these statements which to us have the appearance of evidence
are chosen as the so-called primitive statements or axioms . . . ” (p. 118)

And further:

“we agree to accept any other statement as true only if we have suc-
ceeded in establishing its validity, and to use, while doing so, nothing
but axioms, definitions and such statements of the discipline the valid-
ity of which has been established previously.” (p. 118)

The method of constructing a theory in accordance with these principles is the
deductive method,6 and the theory so constructed is a formalized deductive theory.7

So one task of metamathematics is the construction of formalized deductive
theories via the deductive method. Now, as a result of the application of this
method “deductive theories acquire certain interesting and important features”
[Tarski, 1941a, p. 120]. It is a further task of metamathematics to uncover these
features.

This further task can be carried out at two distinct levels. One can investigate
specific deductive theories. In the 1920s, Tarski carried out metamathematical
investigations into a number of deductive theories - for example, the sentential
calculus (see [Tarski, 1930c]), the algebra of logic, the arithmetic of real numbers,
the geometry of straight lines, the theory of order, and the theory of groups.8

Tarski writes in [Tarski, 1930d]:

“Strictly speaking metamathematics is not to be regarded as a single
theory. For the purpose of investigating each deductive discipline a
special metadiscipline should be constructed.” (p. 60)

6Tarski points out that logic occupies a special position in regard to the deductive method.
In using the method to construct any other discipline or theory, we cannot but presuppose logic.
In Tarski’s terminology, given a target discipline, logic will be a discipline preceding the given
discipline. And it may be convenient to presuppose other disciplines too. Tarski writes:

“Thus logic itself does not presuppose any preceding discipline; in the construction
of arithmetic as a special mathematical discipline logic is presupposed as the only
preceding discipline; on the other hand, in the case of geometry it is expedient
— though not unavoidable — to presuppose not only logic but also arithmetic.”
[Tarski, 1941a, p. 119]

So, whenever we apply the deductive method, we must be sure to enumerate the preceding
disciplines.

7The phrase ‘formalized deductive discipline’ appears in the early papers [Tarski, 1930b] and
[Tarski, 1930d]. In [Tarski, 1930d], Tarski writes:

“Naturally not all deductive systems are presented in a form suitable for objects of
scientific investigation. Those, for example, are not suitable which do not rest on a
definite logical basis, have no precise rules of inference, and the theorems of which
are formulated in the usually ambiguous and inexact terms of colloquial language
— in a word those which are not formalized. (p.60)

8See [Tarski, 1983a, p. 205, fn. 2], where Tarski mentions that he investigated these last five
theories during 1926–8.
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But one can also proceed at a more abstract level, and explore concepts that
are common to all these special metadisciplines. In [30d], Tarski proceeds at this
higher level of generality, and we will start with Tarski’s study of general deductive
systems.

2.1 General deductive systems

In his paper “Fundamental Concepts of the Methodology of the Deductive Sci-
ences” [Tarski, 1930d], Tarski’s aim is

“to make precise the meaning of a series of important metamathemat-
ical concepts which are common to the special metadisciplines, and to
establish the fundamental properties of these concepts.” (p. 60, original
emphases)

Tarski starts out with the fundamental concept of consequence, and provides the
first rigorous axiomatic characterization of this notion. Tarski goes on to define
a number of further concepts, including logical equivalence, axiomatizability, inde-
pendence, consistency, and completeness. Tarski thus provided the first precise,
systematic treatment of these basic metamathematical concepts.

The axiomatic system (or theory) that Tarski presents in [Tarski, 1930d] con-
tains just two primitive concepts, sentence and consequence. Sentences are certain
inscriptions of a well-defined form. And a deductive discipline is a set of (mean-
ingful) sentences. Let S be the set of all meaningful sentences of a given language,
and let A be an arbitrary set of sentences from S that compose a particular deduc-
tive discipline. ‘Cn(A)’ denotes the set of consequences of set A, those sentences
derived from A via rules of inference. The schema of a definition of consequence
can be given as follows: the set of all consequences of the set A is the intersec-
tion of all sets which contain the set A and are closed under the given rules of
inference. But we are working at too high a level of generality to give an exact
definition of consequence; it is the task of a specific metadiscipline to establish
rules of inference, and thereby an exact definition of consequence. Instead, we are
to regard the notion of consequence as primitive, and characterized only through
the axioms. From just these two primitive concepts, sentence and consequence,

“almost all basic concepts of metamathematics can be defined; on the
basis of the given axiom system various fundamental properties of these
concepts can be established.” (p. 69)

Tarski presents an axiom system composed of four axioms which express basic
properties of the primitive concepts and “are satisfied in all known formalized
disciplines” (p. 63). The axioms are as follows

Axiom 1. ¯̄S ≤ ℵ0 (where “S” is the cardinality of the set S)

Axiom 2. If A ⊆ S, then A ⊆ Cn(A)S.
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Axiom 3. If A ⊆ S, then Cn(Cn(A)) = Cn(A).

Axiom 4. If A ⊆ S, then Cn(A) = ∩{Cn(X) : X is a finite subset of A}.
Axiom 1, Tarski says, “scarcely requires comment” (p. 63), though he does ac-
knowledge the challenge that S cannot be denumerably infinite if sentences are
regarded as physical inscriptions.9

Axiom 2 tells us that consequences of A are sentences, and Axiom 3 tells us that
consequences of consequences of A are consequences of A. According to Axiom 4,
any consequence of A is a consequence of a finite subset of A — and this respects
the idea that “in concrete disciplines” (p. 64) rules of inference operate on a finite
number of sentences.

Tarski goes on to single out “an especially important category of sets of sentences
. . . namely, the deductive systems.” A deductive system, or “closed system” or
“simply a ‘system’” (p. 70), is a set of sentences that is closed under consequence
— that is, it contains all of its consequences. Tarski writes:

“Deductive systems are, so to speak, organic units which form the
subject matter of metamathematical investigations. Various important
notions, like consistency, completeness, and axiomatizability, which we
shall encounter in the sequel, are theoretically applicable to any sets
of sentences, but in practice are applied chiefly to systems.” (p. 70)

The bulk of [Tarski, 1930d] is a detailed examination of the properties of (de-
ductive) systems. Tarski defines a number of fundamental metamathematical con-
cepts. Two sets of sentences are logically equivalent if they have all their conse-
quences in common (p. 72). An axiom system of a set of sentences is a finite
set which is equivalent to that set, and a set of sentences which has at least one
axiom system is called axiomatizable (p. 72). A set of sentences is independent if
is is not equivalent to any of its proper subsets (p. 83). A basis of the set A is
an independent set of sentences which is equivalent to the set A (p. 88). A set of
sentences is consistent if it is not equivalent to the set of all meaningful sentences
(p. 90).10 The decision domain of a set A of sentences is the set of all sentences
that are either consequences of A or which, when added to A, yield an inconsistent

9Of the assumption that S is denumerably infinite, Tarski writes:

“. . . it may be noted here that I personally regard such an assumption as quite
sensible, and that it appears to me even to be useful from a metamathematical
standpoint to replace the inequality sign by the equality sign in Ax. 1.” [Tarski,
1930d, p. 64]

Throughout his career, Tarski never showed any finitistic qualms.
10Tarski points out that his definition of consistency departs from the usual one, according

to which a set of sentences is consistent if there is no sentence which together with its negation
belongs to the consequences of this set. Tarski notes that the two definitions are equivalent for
all disciplines based on the system of sentential calculus — indeed, this is the content of Theorem
9* of Tarski’s paper [Tarski, 1930b]. Tarski also notes that his definition is much more general,
since it applies to theories without negation, and to theories in which negation does not have the
usual properties. Tarski cites Post [Tarski, 1921] as the source of this definition.
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set of sentences; and A is said to be complete if its decision domain contains all
meaningful sentences (p. 93).11 The cardinal degree of completeness of the set A
of sentences is the cardinality of the total number of systems which include the set
A (pp. 100–101). And the ordinal degree of completeness is the smallest ordinal
number π for which there is no strictly increasing sequence of type π of consistent
systems which include the set A (p. 101).12

[Tarski, 1930d] contains proofs of a large number of seminal theorems on ax-
iomatizability, independence, and consistency and completeness. For example,
Corollary 37 (p. 87) tells us that if a system includes an infinite independent set
of sentences, then it has uncountably many subsystems, of which only countably
many are finitely axiomatizable. Tarski writes:

“It is to be noted that within almost all deductive disciplines, and in
particular within the simplest of them — the sentential calculus — it
has been found possible to construct a set of sentences which is both
infinite and independent, and thus to realize the hypothesis of the last
corollary [Corollary 37]. Hence it turns out that in all these disciplines
there are more unaxiomatizable than axiomatizable systems; the de-
ductive systems are, so to speak, as a rule unaxiomatizable, although in
practice we deal almost exclusively with axiomatizable systems. This
paradoxical circumstance was first noticed by Lindenbaum in applica-
tion to the sentential calculus.” (p. 88)

(Tarski’s use of the term ‘paradoxical’ indicates that unaxiomatizable theories
came as a surprise.) For another example, Tarski establishes (by Corollary 44)
that “every axiomatizable set of sentences possesses at least one basis” (p. 90).
This result does not extend to unaxiomatizable sets of sentences on the basis of
Axioms 1–4 (though as we will see below, it does extend to deductive disciplines
that presuppose the sentential calculus). Another result, Theorem 56 (p. 98),
tells us that “every consistent set of sentences can be extended to a consistent
and complete system” (ibid.), a generalization of Lindenbaum’s lemma for the
sentential calculus.

2.2 Classical deductive systems

While in [Tarski, 1930d] Tarski investigated the broadest category of deductive sys-
tems, in his paper “On some fundamental concepts of metamathematics” [Tarski,
1930b], Tarski investigated a certain subcategory — the classical systems. In

11As with the definition of consistency, this definition of completeness departs from the usual
one, and does not rest on the concept of negation. Tarski again cites Post [1921] as the source
of this definition of completeness. Theorem 10* of Tarski’s [1930b] states the equivalence of the
two definitions for systems based on the sentential calculus.

12That is, there is no increasing sequence of type π of the form 〈X, . . . , Xν , . . . ,Xη , . . . ,〉, where
Xν ⊆ Xη ⊆ S and and Cn(Xν)?Cn(Xη) for ν < η < π. Or, in the now-standard terminology,
there exists no chain of consistent theories of type π beginning with X.
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[Tarski, 1930b], Tarski lays out two groups of axioms. The first contains Axioms
1–4, together with a fifth:

Axiom 5. There exists a sentence x ∈ S such that Cn({x}) = S.

The axioms in the second group are “of a more special nature”:

“In contrast to the first group of axioms those of the second group
apply, not to all deductive disciplines, but only to those which presup-
pose the sentential calculus, in the sense that in considerations relating
to these disciplines we may use as premises all true sentences of the
sentential calculus.” (p. 31)

These additional axioms contain two new primitive concepts: the conditional and
negation. Axiom 6 tells us that if x and y are meaningful sentences, so are x→ y
and ¬x. The remaining four axioms are as follows (where ‘Ø’ below denotes the
empty set):

Axiom 7. If X ⊆ S, y ∈ S, z ∈ S and y → z ∈ Cn(X), then z ∈ Cn(X ∪ {y}).
Axiom 8. If X ⊆ S, y ∈ S, z ∈ S and z ∈ Cn(X ∪ {y}), then y → z ∈ Cn(X).

Axiom 9. If x ∈ S, then Cn({x,¬x}) = S.

Axiom 10. If x ∈ S, then Cn({x}) ∩ Cn({¬x}) = Cn(∅).

Axiom 7 is the rule of detachment, or modus ponens. Tarski takes Axiom 8 to be
one formulation of the so-called deduction theorem, a discovery of Tarski’s. Tarski
writes:

“This theorem, in its application to the formalism of Principia Math-
ematica, was first established by the author as far back as 1921 . . . .
Subsequently the deduction theorem was often applied in metamathe-
matical discussion.”13

Axiom 9 is the classical law of non-contradiction, in the form “Everything follows
from a contradiction”. Axiom 10 is a formulation of the classical law of excluded
middle.

So the axiomatic system of [Tarski, 1930b] applies to a subcategory of deductive
systems, the classical deductive systems, encompassing the sentential calculus and
all classical systems that extend it, including the first-order predicate calculus.

13Tarski [1983a, p. 32, fn. †]]. Tarski reports that he established the theorem in connection
with a discussion in the monograph of Ajdukiewicz [Tarski, 1921], and discussed the result in a
lecture to the Warsaw Philosophical Institute, listed by title in Ruch Filozoficzny, vol. 6 (1921–
2). As to applications of the deduction theorem, Tarski mentions that it was essential to the
proofs of theorems in Lindenbaum and Tarski’s note [Tarski, 1927b] and Tarski’s note [Tarski,
1929b]. In 1933, Tarski outlined a proof of the deduction theorem for a particular formalized
theory (see [Tarski, 1933b, Theorem 2(a), p. 286]). The deduction theorem is often attributed
to Herbrand, who published the result in [Herbrand, 1928].
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Tarski defines for this subcategory nearly all of the metamathematical notions
that he defined in [Tarski, 1930d]] for deductive systems generally, and in much
the same way.14 He also states without proof a dozen or so theorems. Among these
are the first published statement of Lindenbaum’s lemma (Theorem 12, p. 34),
and the result that every (countable) set of sentences possesses a base (Theorem
17, p.35) — a result that holds for the present subcategory but not generally, as
we noted above.

2.3 The sentential calculus

Another subcategory of deductive systems — the sentential calculus — is inves-
tigated in Lukasiewicz and Tarski’s “Investigations into the sentential calculus”
[Tarski, 1930c]. The authors remark that

“as the simplest deductive discipline, the sentential calculus is particu-
larly suitable for metamathematical investigations. It can be regarded
as a laboratory in which metamathematical methods can be discovered
and mathematical concepts constructed which can then be carried over
to more complicated mathematical systems.” (p. 59)

[Tarski, 1930c] is “a compilation of theorems and concepts belonging to five differ-
ent persons” (p. 38, fn ‡), namely, Lukasiewicz, Tarski, Lindenbaum, Sobocinski,
and Wajsberg — all members of the Warsaw School of Logic.

At the outset of [Tarski, 1930c], Lukasiewicz and Tarski refer the reader to the
conceptual apparatus and notation developed in [Tarski, 1930b]. The concepts of
sentential variable, conditional and negation are taken as primitive. The meta-
mathematical expressions ‘c(x, y)’ and ‘n(x)’ denote respectively the conditional
with antecedent x and consequent y, and the negation of x. The set S of all
sentences is defined as follows:

“The set S of all sentences is the intersection of all those sets which
contain all sentential variables (elementary sentences) and are closed
under the operations of forming implications [conditionals] and nega-
tions.” (p. 39)

Lukasiewicz and Tarski go on to define the notion of consequence in terms of
substitution and detachment (or modus ponens).

“The set of consequences Cn(X) of the set X of sentences is the in-
tersection of all those sets which include the set X ⊆ S and are closed
under the operations of substitution and detachment.” (p. 40)

From this definition it follows that S and Cn(X) satisfy the axioms 1–5 of [Tarski,
1930b] (see above). Now consider X such that X ⊆ S and X is closed under con-
sequence (that is, Cn(X) = X). Then by Tarski’s characterization of a deductive

14The only exceptions are the notions of decision domain and cardinal degree of completeness.
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system, X is a deductive system. It is these deductive systems that Lukasiewicz
and Tarski investigate in [Tarski, 1930c].

Lukasiewicz and Tarski identify two methods of constructing such a deductive
system. One is the familiar axiomatic method, according to which

“an arbitrary, usually finite, set X of sentences — an axiom system —
is given, and the set Cn(X), i.e. the smallest deductive system over
X , is formed.” (p. 40)

The second method is the matrix method. The following definition of a matrix is
due to Tarski:

“A (logical) matrix is an ordered quadruple M = [A,B, f, g] which
consists of two disjoint sets (with elements of any kind whatever) A
and B, a function f of two variables and a function g of one variable,
where the two functions are defined for all elements of the set A ∪ B
and take as values elements of A ∪B exclusively.” (p. 41)15

The elements of the set B are called the designated elements (following Bernays).
For an example of a matrix, set A,B, f, g as follows: A = {0}, B = {1}, f(0, 0) =
f(0, 1) = f(1, 1) = 1, f(1, 0) = 0, g(0) = 1, g(1) = 0. This is the matrix associated
with the classical sentential calculus (and the designated value is 1). The idea
is that the functions f and g correspond to the syntactic operations of forming
conditionals and negations.16 This correspondence is made precise by Tarski’s
recursive definition of a value function:

“The function h is called a value function of the matrixM = [A,B, f, g]
if it satisfies the following conditions:

1. the function h is defined for every x ∈ S;

2. if x is a sentential variable, then h(x) ∈ A ∪B;

3. if x ∈ S and y ∈ S, then h(c(x, y) = f(h(x), h(y));

4. if x ∈ S then h(n(x) = g(h(x)).” (p. 41)

Given the notion of a value function, Tarski defines the notion of satisfaction of a
sentence by a matrix:

15I have replaced Tarski’s symbol ‘+’ for set-theoretical union by the more familiar ‘∪’.
16The functions f and g may be captured by the these tables for ‘to’ and ‘¬’:

x y x→ y x ¬x

1 1 1 1 0
1 0 0 0 1
0 1 1
0 0 1

Replacing ‘1’ and ‘0’ by ‘T’ and ‘F’ yields the familiar truth tables (where T is the designated
value).
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“The sentence x is satisfied (or verified) by the matrix M = [A,B, f, g]
. . . if the formula h(x) ∈ B holds for every value function h of this
matrix.” (p. 41)

In order to construct a deductive system of the sentential
calculus we proceed as follows: we set up a matrix and consider all those sen-

tences satisfied by it.17

In [Tarski, 1930c], the matrix method is used to construct not only the classical
(two-valued) system of the sentential calculus, but also an entire class of many-
valued systems. The definition of the classical system L of the sentential calculus
has already been anticipated:

“The ordinary [classical] system L of the sentential calculus is the set
of all sentences which are satisfied by the matrix M = [A,B, f, g]
where A = {0}, B = {1} and the functions f and g are defined by the
formulas: f(0, 0) = f(0, 1) = f(1, 1) = 1, f(1, 0) = 0, g(0) = 1, g(1) =
0.” (p. 42)

Lukasiewicz and Tarski observe that the consistency and completeness of L follows
easily from this definition. They also define L by the axiomatic method, presenting
an axiom system due to Lukasiewicz, namely the set {(p→ q) → ((q → r) → (p→
r)), (¬p → p) → p, p→ (¬p → q)}.

Tarski proved the following noteworthy theorem about L:

The system L, as well as every axiomatizable system of the sentential
calculus which contains the sentences ‘p → (q → p)’ and ‘p → (q →
((p → (q → r)) → r))’, possesses a basis consisting of a single sentence.
(Theorem 8, p. 44.)

A generalization of this theorem is also stated:

The system L, as well as every axiomatizable system of the sentential
calculus which contains the sentences ‘p → (q → p)’ and ‘p → (q →
((p → (q → r)) → r))’, possesses for every natural number m a basis
containing exactly m elements. (Theorem 10, p. 45.)18

17This procedure rests on the following theorem:
If M is a normal matrix, then the set of all sentences satisfied by M is a deductive system, where
a matrix is normal if the formulas x ∈ B and y ∈ A always imply f(x, y) ∈ A.

The generality of the matrix method is established by a converse of this theorem, due to
Lindenbaum. Lindenbaum’s theorem runs as follows:

For every deductive system X there exists a normal matrix M = [A,B, f, g], with an at most
denumerable set A ∪ B, which satisfies exactly the sentences of X. (See [Tarski, 1930c, pp.
41–42].)

18The proof of the theorem for L is credited to Sobocinski, and the generalizations to other
systems to Tarski.

Tarski also proved the following theorem, which provides a contrast between L and other
systems of the sentential calculus: “Theorem 11. For every natural number, systems of the
sentential calculus exist every basis of which contains exactly m elements.” [Tarski, 1930c, p. 45]
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Lukasiewicz and Tarski also use the matrix method to define a class of many-
valued systems founded by Lukasiewicz — the so-called “n-valued systems”:

“The n-valued system Ln of the sentential calculus (where n is a natural
number or n = ℵ0) is the set of all sentences which are satisfied by the
matrix M = [A,B, f, g] where, in the case n = 1 the set A is null, in
the case 1 < n < ℵ0A consists of all fractions of the form k/n− 1 for
0 ≤ k < n− 1, and in the case n = ℵ0it consists of all fractions k/1 for
0 ≤ k < 1; further the set B is equal to {1} and the functions f and g
are defined by the formulas: f(x, y) = min(1, 1−x+ y), g(x) = 1−x.”
(pp. 47–8)19

Lukasiewicz and Tarski report a number of significant results about these systems.
They include the following:

(i) For every n, 1 ≤ n < ℵ0, Ln is axiomatizable. (Theorem 22, p. 49).20

(ii) Let M = [A,B, f, g] be a normal matrix [see fn. 18] in which the set A ∪ B
is finite. If the sentences ‘(p→ q) → ((q → r) → (p → r))’, (q → r) → ((p→
q) → (p → r)), (p → q) → (¬q → ¬p),¬q → ((p → q) → ¬p) are satisfied by
M , then the set of all sentences satisfied by M is axiomatizable. (Theorem
24, p. 50)

(iii) Every system Ln, where 2 ≤ n < ℵ0, possesses, for every natural number
m (and in particular for m = 1), a basis which has exactly m elements.
(Theorem 26, p. 50.)

In comparing the axiomatic method and the matrix method, Tarski writes:

19For example, consider the case n = 3. Then A = {0, 1
2
} and B = {1}. The functions f and

g may be captured by the following tables for → and ¬ respectively:

p q p→ q p ¬p

1 1 1 1 0
1 1

2
1
2

1
2

1
2

1 0 0 0 1
1
2

1 1
1
2

1
2

1
1
2

0 1
2

0 1 1
0 1

2
1

0 0 1

Given values m for p and n for q, the value of p→ q is min(1, 1 −m+ n), and the value of ¬p is
1 −m.

In the given definition, A is the set of all proper fracctions. Lindenbaum showd that any other
denumerably infinite subset of the interval 〈0, 1〉 will serve as well.

20This theorem was proved by Wajsberg for n = 3 and for all n for which n-1 is a prime
number, and later extended to all natural numbers by Lindenbaum.



12 Keith Simmons

“Each of the two methods has its advantages and disadvantages. Sys-
tems constructed by means of the axiomatic method are easier to in-
vestigate regarding their axiomatizability, but systems generated by
matrices are easier to test for completeness and consistency.” (p. 42)

Tarski was keenly aware of the value of the matrix method as an alternative to the
axiomatic method. Blok and Pigozzi point out that although Tarski was not the
first to use matrices to construct deductive systems (or ‘logics’), he was responsible
for recognizing the importance of matrices for general metamathematics. They
continue:

“It is difficult to overestimate their importance in this regard. They
provided a means of defining logics that were not a priori finitely ax-
iomatizable, and this led naturally to the question of the existence
of logics that are not finitely axiomatizable. They were used first by
Bernays and then extensively by Lukasiewicz to establish the indepen-
dence of various axiom systems. Finally, they provided a natural way
of defining the equivalence of deductive systems with different primi-
tive connectives. All three of these topics proved to be a rich source of
problems.” [Blok and Pigozzi, 1988, p. 421])

In addition, there is fruitful interplay between the two methods. Corcoran observes
that [Tarski, 1930c]

“contains results achieved by interrelating axiomatic and matrix meth-
ods for defining sentential calculi, an interrelation that clearly fore-
shadows what will later be seen as the interrelation of proof-theoretic
(syntactic) and model-theoretic (semantic) methods.” [Tarski, 1983a,
p. xix]

2.4 The algebraization of logic

Tarski’s paper “Foundations of the Calculus of Systems” [1935+1936] extends
the metamathematical investigations of [1930b; 1930c] and [1930d]. Like [Tarski,
1930b], the paper considers only those theories “whose construction presupposes
a logical basis of a greater or lesser extent, and at least the whole sentential
calculus.” (p. 342). But the axiom system of [Tarski, 1930b] is replaced by a
“simpler”, “more natural” one (p. 342). Let ‘L’ denote the smallest deductive
system defined by Axioms 1–10 of [Tarski, 1930b] — that is, the system C(∅), the
set of consequences of the empty set. In the axiom system of [Tarski, 1935+1936],
the symbol ‘L’ is taken as a primitive expression instead of ‘Cn(X)’ — the concept
of consequence is no longer a primitive notion.

The new axiom system consists of the following five axioms:

Axiom 1. 0 < S ≤ ℵ0 (where S is the set of meaningful sentences)
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Axiom 2. If x, y ∈ S, then x̄ ∈ S and x → y ∈ S (where ‘x̄’ is the negation of
x).

Axiom 3. L ⊆ S.

Axiom 4. If x, y, z ∈ S, then (x̄ → x) → x ∈ L, x → (x̄ → y) ∈ L and
(x→ y) → ((y → z) → (x→ z)) ∈ L.

Axiom 5. If x, x→ y ∈ L (where y ∈ S), then y ∈ L.

L can be interpreted as the set of all logically valid sentences. It is straightforward
to define the concept of consequence, once we have defined the concepts of the
sum and the product of sentences:

DEFINITION 1. x+ y = x̄→ y, x.y = (x→ ȳ) for all x, y ∈ S.21

Tarski goes on to show that this system of axioms and primitive concepts is
equivalent to that of [Tarski, 1930b].

At the heart of [35+36] are two deductive systems, each presented as an inter-
pretation of Boolean algebra. Tarski writes:

“[T]wo calculi can be constructed which are very useful in metamath-
ematical investigations, namely the calculus of sentences and the cal-
culus of deductive systems; the first is a complete and the second a
partial interpretation of the formal system which is usually called the
algebra of logic or Boolean algebra.” (p. 347)

Tarski identifies eight primitive concepts: ‘B’ is ‘the universe of discourse’, ‘<’ de-
notes the relation of inclusion, ‘=’ denotes identity, ‘+’ and ‘.’ denote respectively
the sum of and product operations, ‘0’ denotes the zero (or empty) element, ‘1’
denotes the unit (or universal) element, and ‘x̄’ denotes the complement of the
element x. There are seven postulates that suffice for Boolean algebra:

Postulate I. (a) If x ∈ B, then x < x; (b) if x, y, z ∈ B, x < y and y < z, then
x < z.

Postulate II. If x, y ∈ B, then x = y if and only if both x < y and y < x.

Postulate III. If x, y ∈ B, then (a) x+ y ∈ B; (b) x < x+ y and y < x+ y; (c) if
z ∈ B, x < z and y < z, then x+ y < z.

Postulate IV. If x, y ∈ B, then (a) x.y ∈ B; (b) x.y < x and x.y < y; (c) if
z ∈ B, z < x and z < y, then z < x.y.

21In order to define the concept of consequence, the definition of the sum and the product of
sentences is extended by recursion to an arbitrary finite number of conjuncts and disjuncts:

Definition
Pn

i=1 xi =
Qn

i=1 xi = x1 if n = 1 and x1 ∈ S;
Pn

i=1 xi =
Pn=1

i=1 xi + xn and
Qn

i=1 xi =
Qn=1

i=1 xi.xn, if n is an arbitrary natural number > 1 and x1, x2, . . . , xn ∈ S.
The definition of consequence is as follows:
Definition For an arbitrary set XS the set Cn(X) consists of those, and only those, sentences

y ∈ S, which satisfy the following condition: either y ∈ L, or there exist sentences x1, x2, . . . , xn ∈
X such that (

Qn
i=1 xi → y) ∈ L.
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Postulate V. If x, y, z ∈ B, then (a) x.(y + z) = x.y + x.z and (b) x + (y.z) =
(x + y).(x+ z).

Postulate VI. (a) 0, 1 ∈ B; (b) if x ∈ B, then 0 < x and x < 1.

Postulate VII. If x ∈ B, then (a) x̄ ∈ B, (b) x.x̄ = 0, and (c) x+ x̄ = 1.

These are the axioms for the general, abstract theory of Boolean algebra.
Boolean algebra is an abstraction from Boolean set algebra, in which B is the uni-
verse of sets, ‘<’ denotes set-theoretical inclusion, ‘+’ and ‘.’ denote respectively
set-theoretical union and intersection, 0 and 1 are the empty set and universal set
respectively, and ‘x̄’ is the set-theoretical complement of x.

Tarski turns first to the calculus of sentences (which he also calls “the senten-
tial algorithm” to avoid confusion with the expression ‘sentential calculus’). Its
universe of discourse is S, and two relations are defined on S: the relation of
implication, denoted by ‘⊃’, and the relation of equivalence, denoted by ‘≡’.

DEFINITION 2. (a) x ⊃ y if and only if x, y ∈ S and x → y ∈ L; (b) x ≡ y if
and only if both x ⊃ y and y ⊃ x.

Now Tarski states the following (easily checked) theorem:

THEOREM 3. Postulates I–VII are satisfied under the following replacements:
the symbols ‘B’, ‘<’, and ‘=’ are replaced respectively by ‘S’, ‘⊃’, and ‘≡’; and
‘0’ is replaced by the variable ‘u’ and ‘1’ by the variable ‘v’, where it is assumed
that u ∈ S, ū ∈ L, and v ∈ L. (See Theorem 4, p. 348.)

This theorem shows that the Boolean algebra of Postulates I–VII can be derived
from the Axioms 2–5.22 And the result holds in the other direction. Tarski sums
up:

“We can thus assert that Axs. 2-5 form a system of statements which
is equivalent to the system of postulates for the ordinary algebra of
logic” (p. 349).

In making fully precise the relation between the system L and Boolean algebra,
Tarski sets the stage for algebraic logic. The calculus of systems can now be seen as
an interpretation of Boolean algebra. As Blok and Pigozzi put it, “. . . here for the
first time can be found all the essential features of modern algebraic logic” [Blok
and Pigozzi, 1988, pp. 45–6]; and as Vaught puts it, “. . . Tarski introduced here
the now well-known Boolean algebra B(L) canonically associated with a theory L;
and he initiated the still continuing study of the algebras B(L)” [Vaught, 1986, p.
873]. Tarski observes that the present interpretation of Boolean algebra is easily
modified so as to avoid the replacement of identity by another equivalence relation
(viz. =). This modification yields a very early instance of an important and
now-familiar category of Boolean algebras: the Lindenbaum-Tarski algebras.23

22Axiom I plays no part in the proof of the theorem.
23Tarski details the modification in fn. 1, p. 349. Given any x ∈ S, consider its equivalence
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Despite the lasting significance of the calculus of systems, the ”chief subject”
of Tarski’s [Tarski, 1935+1936] is another calculus, the the calculus of deductive
systems, or for short, the calculus of systems. Recall that a deductive system is
a system closed under consequence. Given the definition of consequence (see fn.
22), the notion of a deductive system can be characterized as follows:

X is a deductive system iff L ⊆ X ⊆ and if x, x → y ∈ X (where
y ∈ S), then y ∈ X .

In the calculus of systems, there is a correlate of each primitive concept of
Boolean algebra. The universe of discourse is the class of deductive systems. L is
the zero system and S is the unit system. Inclusion and identity are interpreted
in the ordinary set-theoretical way — and, similarly, the product of systems is
interpeted as set-theoretical intersection. However, the addition of systems is
not set-theoretical union — the union of two systems does not in general yield
a new deductive system. Instead, the addition of systems X and Y , denoted by
‘X+̇Y ’, is defined as Cn(X∪Y ). Similarly, complementation is not set-theoretical
complementation; instead, the complement X̄ of systemX is the sum of all systems
Y disjoint with X (i.e. such that X ∩Y = L). The calculus of systems is a partial
interpretation of Boolean algebra. Consider the postulates I–VII, and replace the
variables ‘x’, ‘y’, ‘z’ respectively by ‘X ’, ‘Y ’, ‘Z’, and the constants ‘B’, ‘<’, ‘+’,
‘0’ and ‘1’ respectively by ‘D’, ‘⊆’, ‘+’, ‘L’ and ‘S’. Then every postulate except
VIIc is satisfied. And the following consequence of VIIc is also satisfied:

VIId. If X,Y ⊆ D, and X ∩ Y = L, then Y ⊆ X̄. (See Theorem 6, p.351.)

So the law of excluded middle — X+̇X̄ = S — fails in the calculus of systems, and
it is here that the calculus of systems differs essentially from the ordinary calculus
of classes or sets. Tarski observes:

“The formal resemblance of the calculus of systems to the intuitionistic
sentential calculus of Heyting is striking: we might say that the formal
relation of the calculus of systems to the ordinary calculus of classes is
exactly the same as the relation of Heyting’s sentential calculus to the
ordinary sentential calculus” (p. 352)

In other words, the system of Postulates I–VI and VIIa,b,d is

“a sufficient basis for a system of the algebra of logic which has the
intuitionistic calculus as one of its interpretations” (ibid.)24

class X ⊆ S — viz., the set of all sentences y such that y ≡ x. For these equivalence classes the
relations and operations ⊃,+, ., etc. are defined in the appropriate way; for example, ‘X ⊃ Y ’
says that x ⊃ y for all x ∈ X and y ∈ Y . O is the set of all sentences x ∈ S such that x̄ ∈ L,
and 1 is the set L. (Observe that the identity relation is left unchanged.) The set of equivalence
classes is a Boolean algebra — the Lindenbaum-Tarski algebra determined by L.

24For a more detailed elaboration of these remarks, Tarski refers the reader to his paper [Tarski,
1938b] (in particular section 5) and Stone [1937–38]. (The references are given in [Tarski, 1983a,
p. 352, fn. †], where a typographical error appears — ‘X and VII” should read “XVII”.)
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Tarski goes on to state a large number of results about the calculus of systems
that are important both for metamathematics and model theory.25 In section 3,
Tarski investigates axiomatizable and non-axiomatizable systems. In section 4,
he studies irreducible26 and complete27 systems, and shows how to characterize
certain classes of systems in terms of cardinality and structure. In section 5 and the
appendix, Tarski applies these general results to particular deductive theories.28

We have seen, then, that Tarski’s metamathematical investigations in [Tarski,
1935+1936] are carried out in the framework of Boolean algebra; they “do not
transcend the boundary of the algebra of logic” (p. 350). In a footnote later
added to [Tarski, 1935+1936], Tarski observes:

“In fact the calculus of deductive systems outlined in this paper proves
to coincide with what was somewhat later developed as the calculus of
Boolean-algebraic ideals. . . ”29

Subsequently, it was the study of Boolean algebras that took center stage for
Tarski, not the calculus of systems. In his paper [Tarski, 1938b], for example,
Tarski refers to “general metamathematics, i.e. the theory of deductive systems”
as “[a]nother important realization of Boolean algebra” [Tarski, 1938b, p. 454].30

For more on Tarski and algebraic logic, see Section 6 below.

2.5 Metamathematics and models

In Chapter VI of [Tarski, 1941a], Tarski provides a clear, textbook account of the
methodology of the deductive sciences which is strikingly semantic in character.
As we have just seen, the semantic concepts of interpretation and realization figure
in [Tarski, 1935+1936] — but in [Tarski, 1941a] they are at the heart of Tarski’s
presentation of metamathematics.

25For a summary of some of these results, see Blok and Pigozzi [1988, p. 44], and Vaught
[1986, p. 873].

26X is an irreducible system iff X 
= L and for every deductive system Y such that Y ⊆ X, Y =
L or Y = X.

27X is a complete system iff X is a deductive system, X 
= S and for all deductive systems Y
such that X ⊆ Y, Y = X or Y = S.

28These theories include the theory of dense orders, the theory of discrete orders, the theory of
identity, the theory of atomistic Boolean algebras, the general theory of order, and the general
theory of binary relations.

29Fn.1, p. 350. Given a Boolean algebra characterized by Postulates I–VII, an ideal is a non-
empty subset K of B such that (1) if x ∈ K and y ∈ K, then x+ y ∈ K, and (2) if x ∈ K and
y ∈ B, then x.y ∈ K.

Tarski refers the reader to Stone [1936; 1937], with which there is significant overlap or con-
nection.

30As Tarski observes (in fn †, p. 352 of [Tarski, 1935+1936]), [Tarski, 1938b] contains “a more
exact and detailed formulation” of the relation mentioned above between the calculus of systems
and the intuitionistic sentential calculus. But [Tarski, 1938b] proceeds in terms of Boolean
algebra, and not at all in terms of the calculus of systems. It is only at the very end of the paper
that Tarski remarks that the results shown to hold for the formal system of Boolean algebra also
hold for every realization of this system, such as the theory of fields of sets and the calculus of
systems. (For a summary of results in [Tarski, 1938b], see Blok and Pigozzi [1988, pp. 46–7].
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Tarski starts out with a concrete example of a simple deductive theory, the
theory of the congruence of line segments. Let the variables x, y, z range over line
segments. There are two primitive terms ‘S’ and ‘∼=’, where ‘S’ denotes the set
of all line segments, and ‘∼=’ denotes the relation of congruence. There are two
axioms:

Axiom 1. For all x ∈ S, x ∼= x.

Axiom 2. For all x, y, z ∈ S, if x ∼= z and y ∼= z, then x ∼= y.

Tarski goes on to derive two theorems: the first says that the congruence relation
is symmetric, the second that the relation is transitive.

Tarski observes that though our knowledge of segments and congruence goes
a long way beyond the axioms, this additional knowledge plays no role in the
construction of the theory.

“In particular, in deriving theorems from the axioms, we make no
use whatsoever of this knowledge, and behave as though we did not
understand the content of the concepts involved in our considerations,
and as if we knew nothing about them that had not been expressly
asserted in the axioms. We disregard, as it is commonly put, the
meaning of the primitive terms adopted by us, and direct our attention
exclusively to the form of the axioms in which these terms occur.” (p.
122)

Accordingly, we can abstract away from our particular theory by replacing ‘S’
by a variable ‘K’ that ranges over all classes, and ‘∼=’ by a variable ‘R’ that ranges
over all (2-place) relations, so as to obtain:

Axiom I ′. For all x ∈ K,xRx, and

Axiom II ′ For all x, y, z ∈ K, if xRz and yRz, then xRy.

Now the statements of the theory are logical statements; for example, Axiom
I ′ says that the relation R is reflexive on K. And any theorem about congruent
segments is now correlated with a general law in the domain of logic (for example,
that any relationR for which the generalized Axioms I ′ and II ′ hold is symmetric).

At this point, Tarski introduces the notion of a model (or realization) of the
axiom system. If, in a setK, a relationR is reflexive and has the property expressed
by Axiom 2′, then K and R together form a model of the axiom system I and II.
One model is, of course, formed by the class of segments and the congruence
relation — but this is not in any way privileged. Another model of the axiom
system is provided by the universal class and the relation of identity. And another
is formed by the set of all numbers — or any set of numbers — and the relation
given by ‘the difference between numbers x and y is an integer’. Every model of
the axiom theory will also satisfy all theorems deduced from these axioms.
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These general facts, Tarski says, “have many interesting applications in method-
ological researches” [Tarski, 1941a, p. 124]. For example, it may be proved from
these facts that certain sentences cannot be deduced from the axiom system I and
II. Consider the following sentence:

A. There exist two elements x and y of the set S for which it is not the case
that x ∼= y. (There exist two segments that are not congruent).

Though A is true, attempts to prove it from the axioms fail. Can we show that
the attempt must fail? We can, by applying what Tarski here calls the method of
proof by interpretation.31

“If sentence A could be proved on the basis of our axiom system, then,
as we know, every model of this system would satisfy that sentence; if,
therefore, we succeed in indicating such a model of the axiom system
which will not satisfy Sentence A, we shall prove thereby that this
sentence cannot be deduced from Axioms I and II.” (p. 125)

And such a model is easy to find — for example, consider the model formed by
the set of integers, together with the relation ‘the difference between numbers x
and y is an integer’.

Abstracting away from any particular axiom system and its models, Tarski goes
on to state “a general law from the domain of the methodology of the deductive
sciences”.32

“Every theorem of a given deductive theory is satisfied by any model of
the axiom system of this theory; and moreover, to every theorem there
corresponds a general statement which can be formulated and proved
within the framework of logic and which establishes the fact that the
theorem in question is satisfied by any such model.” (p. 127)

This law — a version of what Tarski calls the law of deduction — has “tremendous
practical importance” (p. 127). Given an axiom system of a given theory, we will
often find that the constants of another deductive theory form a model of that
axiom system — that is, we find an interpretation of the axiom system of the
original theory within the other theory.33 And the validity of the theorems of the

31As we shall see, the method here is based on Tarski’s definition of logical consequence in
terms of models — see Section 3.4 below. The definition runs as follows:

The sentence X follows logically from the sentences of the class K if and only if every model
of the class K is also a model of the sentence X. [Tarski, 1936b, p. 417].

We show that A does not follow logically from Axioms I and II by constructing a model of the
axiom system which is not a model of A.

32In leading up to the statement of this law, Tarski makes the simplifying assumption that
logic is the only theory preceding the given theory (see footnote 7 above).

33For example, the axiom system of arithmetic may be interpreted within geometry (enabling
us to obtain a visual images of various facts in the field of arithmetic); and conversely, the axiom
system of geometry has an interpretation within arithmetic (giving rise to analytic geometry,
in which geometrical facts are investigated with the help of arithmetical or algebraic methods).
Further, arithmetic is interpretable within logic (and hence, so is geometry). See [Tarski, 1941a,
pp. 129–130].
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first theory carries over to those of the second: ‘All theorems proved on the basis of
a given axiom system remain valid for any interpretation of the system.” (p. 128)
So in proving a theorem of the original theory we prove any number of others:

“Every proof within a deductive theory contains — potentially, so to
speak — an unlimited number of other analogous proofs.” (p. 128)

These facts demonstrate “the great value of the deductive method from the
point of view of economy of human thought” (ibid). They are also of far-reaching
theoretical importance, since

“they establish a foundation for various arguments and researches within
the methodology of deductive sciences” (p. 128).

For example, the law of deduction is the theoretical basis for all proofs by inter-
pretation.

In the final section of Chapter VI, Tarski stresses the broad scope of the method-
ology of the deductive sciences. As we have seen throughout the present section,
it goes beyond the study of methods used in the construction of deductive sci-
ences, and incorporates the study of deductive theories as wholes ; consider, for
example, investigations into the consistency and completeness of theories. Better,
says Tarski, to call it “metalogic and metamathematics”. Rather than the study
of methods, it is become a general science of deductive sciences, requiring its own
precise methods. Tarski writes:

“Methodology has become like those sciences which constitute its own
subject matter - it has assumed the form of a deductive discipline”.
(p. 140)

2.6 Some historical remarks

Understood in this suitably broad way, the methodology of the deductive sciences
is, Tarski says, “a very young discipline”.

“Its intensive development began only twenty years ago - simultane-
ously (and, as it seems, independently) in two different centers: Got-
tingen under the influence of D. Hilbert and P. Bernays, and War-
saw, where S. Lesniewski and J. Lukasiewicz, among others, worked.”
[Tarski, 1941a, p. 19]

Its roots, however, go back a very long way. We can find an analysis of the de-
ductive sciences in Aristotle’s Posterior Analytics.34 Much more recent, but still of

34[Tarski, 1935]. For example, according to Aristotle every demonstrative science has three
elements: (1) what is posited, (2) the axioms, and (3) the attributes. Consider for illustration the
case of geometry. In geometry, points and lines are posited, and their attributes are demonstrated
“by means of the axioms and from previous conclusions as premisses” (76b9–10, Bk.1, Ch.10,
Posterior Analytics, McKeon [1941, p. 24]).
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historical significance for the methodology of the deductive sciences, are Bolzano’s
Wissenschaftslehre [1837], Pasch [1882], Hilbert’s Grundlagen der Geometrie, and
Veblen and Young [1910].

Applications of the deductive method have a very long history too. Of Euclid’s
Elements, Tarski writes:

“For 2200 years, mathematicians have seen in Euclid’s work the ideal
and prototype of scientific exactitude.” [Tarski, 1941a, p. 120, fn 1]

Tarski continues:

“An essential progress in this field occurred only in the last 50 years,
in the course of which the foundations of the basic mathematical disci-
plines of geometry and arithmetic were laid in accordance with all re-
quirements of the present-day methodology of mathematics.” (p. 120,
fn.1)

Tarski mentions in particular Peano’s Formulaire de Mathematiques, and Hilbert’s
Grundlagen der Geometrie. As they stood, Peano’s and Hilbert’s theories failed
to meet one of the requirements of methodology, that the deductive theory be
formalized. The development of formalized deductive theories started with Frege:

“The first attempts to the present the deductive theories in a formal-
ized form are due to Frege. . . . A very high level in the process of
formalization was achieved in the works of the late Polish logician S.
Lesniewski. . . .” (p. 133)

It is clear that Tarski’s work in metamathematics continued a long tradition,
and that even the “young discipline” of the methodology of the deductive sciences
was not original with Tarski. But it is also clear that Tarski took metamathematics
to a new level. Corcoran writes:

“The modern conception, and perhaps the very existence, of the method-
ology of deductive science as a separate science and in particular as a
formalizable deductive science, is largely due to Tarski in that it was he
who collected, analyzed, and codified emerging concepts and results,
and it was he who most clearly and forcefully articulated and defended
the possibility of such a science.” (Corcoran, editor’s introduction to
[Tarski, 1983a, p. xvi]

3 FORMAL DEFINABILITY

As we have seen, one of the tasks of the methodology of the deductive sciences is to
“make precise the meaning . . . of important metamathematical concepts” [1930e].
In a series of papers published in the 1930s, Tarski carried out this project for a
number of fundamental concepts — most notably definability, truth, and logical
consequence. Tarski constructed precise definitions of each of these concepts.

Tarski distinguished two kinds of definition:
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“The words ‘define’, ‘definable’, etc., are used in two distinct senses: in
the first sense it is a question of a formal relation of certain expressions
to other expressions of a theory. . . ; in the second sense of a semanti-
cal relation between objects and expressions.” [Tarski, 1934, p. 386],
[Tarski, 1935]

Broadly speaking, formal definitions involve only ‘syntactic’ notions, such as
derivability, while semantic definitions involve word-world relations. In [Tarski,
1934], Tarski provided a formal definition of definability. In his papers [Tarski,
1931a; Tarski, 1933a] and [Tarski, 1936b], Tarski constructed semantic definitions
for definability, truth, and logical consequence respectively. In this section, we will
explore Tarski’s formal treatment of definability, and its ramifications. In Section
IV below, we turn to Tarski’s semantic treatment of semantic definability, truth,
and logical consequence.

The formal sense of ‘definability’ is investigated in Tarski’s paper “Some method-
ological investigations on the definability of concepts” [Tarski, 1934]. Tarski con-
structs a formal definition of definability that draws on earlier work of Padoa’s
[Padoa, 1900].

Padoa takes a deductive theory to be a system of undefined symbols (or un-
interpeted primitive terms) and a system of unproved propositions (or axioms).
Padoa’s chief aim is to characterize an irreducible system of undefined symbols,
that is, a system in which no undefined symbol can be defined in terms of the
others:

“We say that the system of undefined symbols is irreducible with respect
to the system of unproved propositions when no symbolic definition
of any undefined symbol can be deduced from the system of unproved
propositions, that is, when we cannot deduce from the system a relation
of the form x = a, where x is one of the undefined symbols and a is a
sequence of other such symbols (and logical symbols).” (pp. 121–22)35

Padoa’s definition of an irreducible system contains an informal characterization
of formal definability that Tarski makes explicit and precise in [Tarski, 1934].
Tarski considers deductive theories with the simple theory of types as their logical
basis, and directs his attention to the extra-logical constants, or terms, of a given
deductive theory. Let ‘a’ be a term, and B any set of terms. A definition of the
term ‘a’ by means of the terms of the set B is a sentence of the following form:

(I) (x)[x = a↔ φ(x, b′, b′′, . . .)]
35As Padoa observes, there is a parallel definition of an irreducible (or “absolutely indepen-

dent”) set of propositions — viz, a set where no member can be derived from the other members.
(Padoa points out that a method of proving this irreducibility is already well-known: we can say
that a proposition is not a logical consequence of the others if there is an interpretation in which
it is false, and the others are true. The method is now standard in independence proofs. Padoa
cites Peano [1899, p. 30], which contains a proof of the absolute independence of the axioms of
arithmetic.) Like Padoa, Tarski presses the analogy between the concept derivable sentence on
the one hand and definable concept on the other.
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where ‘φ(x, b′, b′′, . . .)’ is a sentential function with the sole free variable x, and in
which no extra-logical constants other than b′, b′′, . . . of the set B occurs. Now let
X be a set of sentences in which all terms of B occur. Tarski defines the notion
of (formal) definability as follows:

DEFINITION 4. The term ‘a’ is definable by means of the terms of the set B on
the basis of the set X of sentences if a definition of the term ‘a’ by means of the
terms of B is derivable from the sentences of X . (See [Tarski, 1934, p. 299].)

Observe that this notion of definability involves only formal or ‘syntactic’ no-
tions, in particular those of derivability, sentential function, and term.

Having defined the notion of formal derivability, Tarski goes on to characterize
and justify Padoa’s method for determining the irreducibility of a system of un-
defined symbols (or, equivalently, the undefinability of a term by means of other
terms). Padoa offers only a sketch of this method:

“Let us assume that, after an interpretation of the system of undefined
symbols that verifies the system of unproved propositions has been
determined, all these propositions are still verified if we suitably change
the meaning of the undefined symbol x only. Then, since the meaning
of x is not individualized once we have chosen an interpretation of the
other undefined symbols, we can assert that it is impossible to deduce
a relation of the form x = a, where a is a sequence of other undefined
symbols, from the unproved propositions.” [Padoa, 1900, p. 122]

Tarski describes Padoa’s method this way:

“In order, by this method, to show that a term ‘a’ cannot be defined
by means of the terms of a set B on the basis of a set X of sentences, it
suffices to give two interpretations of all extra-logical constants which
occur in the sentences of X , such that (1) in both interpretations all
sentences of the set X are satisfied and (2) in both interpretations all
sentences of the set B are given the same sense, but (3) the sense of
‘a’ undergoes a change.” [Tarski, 1934, p. 300]

Tarski goes on to present some results “which provide a theoretical justifica-
tion for the method of Padoa” (ibid). Consider again a term a, and a set B of
terms b′, b′′, . . ., where a is not a member of B. Let c′, c′′, . . . be the terms other
than a, b′, b′′, . . . that occur in the sentences of X . The conjunction of all the
sentences of X is represented in the schematic form: ‘ψ(a; b′, b′′, . . . ; c′, c′′, . . .)’.
Suppose that in every sentence of X , variables are uniformly substituted for some
or all terms, where it is assumed that none of these variables become bound. In
this way, sentential functions are formed. The conjunction of all these senten-
tial functions is represented schematically by making the same substitutions in
‘ψ(a; b′, b′′, . . . ; c′, c′′, . . .)’. Tarski proves the following theorems:

THEOREM 1. The term ‘a’ is definable by means of the terms of the set B on
the basis of the set X of sentences if and only if the formula
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II. ∀x(x = a ↔ ∃z′, z′′, . . . ψ(a; b′, b′′, . . . ; z′, z′′, . . .)) is derivable from the sen-
tences of X . (See [Tarski, 1934, p. 301].)

THEOREM 2. The term ‘a’ is definable by means of the terms of the set B on
the basis of the set X of sentences if and only if the formula

III. ∀x, x′, y′, y′′, . . . , z′, z′′, . . . , t′, t′′, . . . (ψ(x′; y′, y′′, . . . ; z, z′, . . .)&ψ(x′′;
y′, y′′, . . . ; t′, t′′ . . .) → x′ = x′′) is derivable. (See [Tarski, 1934, p. 303].)

THEOREM 3. The term ‘a’ is not definable by means of the terms of the set B
on the basis of the set X of sentences if and only if the formula

IV. ∃x, x′, y′, y′′, . . . , z′, z′′, . . . , t′, t′′, . . . (ψ(x′; y′, y′′, . . . ; z, z′, . . .)&ψ(x′′;
y′, y′′, . . . ; t′, t′′ . . .)&x′ �= x′′) is consistent. (See [Tarski, 1934, p. 304].)

Theorem 3 follows immediately from Theorem 2.36

Theorem 3 “constitutes the proper theoretical foundation for the method of
Padoa” [Tarski, 1934, p. 305]. For suppose that we want to establish that the term
‘a’ is not definable by the means of the terms of the set B. We apply the following
procedure (see [Tarski, 1934, p. 305]). Take a deductive system Y , either shown to
be consistent or assumed to be so. Look for terms ā, a, b̄′, b̄′′, . . . , c̄′, c̄′′, . . . , c′, c′′, . . .
which satisfy the following three conditions:

(i) Replacing the terms a, b′, b′′, . . . c′, c′′, . . . by ā, b̄′, b̄′′, . . . , c̄′, c̄′′, . . . in all sen-
tences of X yields sentences of Y .

(ii) Replacing the terms b′, b′′, . . . by the terms b̄′, b̄′′, . . ., and the terms a, c′, c′′, . . .
by the terms a, c′, c′′, . . . in all sentences of X yields sentences of Y .

(iii) The system Y contains the formula ā �= a.

If these conditions are met, then the following conjunction belongs to Y :

ψ(ā; b̄′, b̄′′, . . . ; c̄′, c̄′′, . . .)&ψ(a; b̄′, b̄′′, . . . ; c′, c′′, . . .)&ā �= a.

Formula IV of Theorem 3 is an easy consequence of this conjunction, and so
formula IV belongs to Y . And since Y is consistent, formula IV is consistent. So
by Theorem 3, the term ‘a’ is not definable by means of the terms of B. And here
is Padoa’s method (somewhat extended, since the procedure accommodates the
occurrence of terms in the sentences of X that are different from ‘a’ and the terms
in B.)

Thus Tarski has shown that we are justified in using Padoa’s method in the
simple theory of types. (As Tarski remarks in a footnote subsequently added to
[Tarski, 1934] — fn.2, p.300 — Beth later made a very significant advance, proving

36To show that Theorem 3 follows from Theorem 2, Tarski observes that formula (II) is equiv-
alent to the negation of formula (I), and applies the principle that a formula is not provable if
and only if its negation is consistent.
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Theorems I and II for a much wider class of deductive theories — the theories of
first-order logic.)37 The method has significant practical importance. Suppose
we are considering the primitive terms of a given deductive theory. By applying
Padoa’s method as many times as there are primitive terms, we may determine
whether or not the terms are mutually independent (or in Padoa’s terminology,
whether or not they form an irreducible system.) If the terms are not mutually
independent, then we may eliminate the unnecessary ones — and this may lead
to a simplification of the axiom system.

To illustrate this, Tarski considers n-dimensional Euclidean geometry. We may
take the terms ‘equidistant’ and ‘lying between’ as the sole primitive terms of
an axiom system of geometry. (The term ‘equidistant’ is the metrical primitive
term and ‘lying between’ is the descriptive primitive term of geometry.) Tarski
announces that by Padoa’s method it can be shown that the term ‘equidistant’ is
not definable by means of the term ‘lying between’. However, for 2 dimensions
and higher, the term ‘lying between’ is definable by means of the term ‘equidis-
tant’38 — and the definition may be constructed according to the formula II in
Theorem 1 above. Accordingly, Padoa’s method yields a simpler axiom system for
n-dimensional geometry (n > 1) in which ‘equidistant’ is the only primitive term.

So the formally defined notion of definability is the key to Tarski’s presentation
and justification of Padoa’s method. In the second half of [Tarski, 1934], Tarski
takes the notion of definability in another direction, using it to characterize what
he calls “the problem of the completeness of concepts”. This requires the notion
of an “essentially richer” set, which rests on the notion of definability. Let Y be a
set of sentences, and let X ⊆ Y . Then Y is essentially richer than X if and only
if there are terms in Y (i.e. occurring in the sentences of Y ) that are not in X ,
and these terms are not definable by means of the terms in X (not even on the
basis of Y ). Now we can define the notion of a set of sentences being complete
with respect to its terms.

DEFINITION 5. A set X of sentences is complete with respect to its terms if it is
impossible to construct a categorical set Y of sentences which is essentially richer
than X with respect to specific terms. (See [Tarski, 1934, p. 311].)39

37[Tarski, 1953].
38See Lindenbaum and Tarski [1927b]. Tarski credits Lindenbaum with the result that the two

terms are independent of each other only in the case of one-dimensional geometry.
39Notice the restriction here to categorical sets of sentences, where a set is categorical if any

two interpretations of it are isomorphic. Tarski expresses the intuitive significance of the notion
of categoricity this way:

“A non-categorical set of sentences (especially if it is used as an axiom system of
a deductive theory) does not give the impression of a closed and organic unity and
does not seem to determine precisely the meaning of the concepts contained in it.”
[Tarski, 1934, p. 311]

Suppose we were to drop this restriction, and say that a set X of sentences is complete with
respect to its terms if and only if it is impossible to construct an essentially richer set Y . Tarski
points out (pp. 308–9) that, given this unrestricted definition, there will be no complete sets
(apart from some trivial cases). For suppose that X is consistent, and does not contain all extra-
logical constants, or terms. Now add to X an arbitrary logically provable sentence that contains
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The problem of the completeness of concepts can now be stated: given a set of
sentences, is it complete or incomplete with respect to its specific terms? For
specific examples, Tarski again turns to geometry. Consider descriptive one-
dimensional geometry, the geometry of points and subsets of a straight line in
which the only primitive concept is that of lying between. Consider the (easily for-
mulated) categorical systemX1 which contains ‘lying between’ as its only primitive
term. Now we can extend X1 to the full metrical geometry of the straight line by
adding ‘equidistant’ as a primitive term. Call this extended system X2. As we
saw above, the concept of equidistance cannot be defined in terms of the concept
of lying between. Since X2 is categorical and essentially richer than X1, it follows
that X1 is not complete with respect to its terms.

Now the system X2, like X1, is not complete with respect to its terms. But
we can extend X2 to a system that is. We extend X2 to an essentially richer
categorical set of sentences X3 by adding two new primitive terms, say ‘0’ and
‘1’, together with an axiom saying that these terms denote two distinct points. It
turns out that X3 is complete with respect to its terms. (X3 is, in fact, formally
identical to the arithmetic of the real numbers.)40

As a whole, Tarski’s paper [Tarski, 1934] may be regarded as an investigation
into the concept of concept. The formal definition of definable concept is the core
of Tarski’s solution to two problems: the problem of the definability and mutual
independence of concepts, and the problem of the completeness of concepts. As
we have seen, this definition turns on formal relations between expressions, such
as derivability. No semantic word-world relations are involved. The reverse is true
for Tarski’s semantic definitions of definability, truth and logical consequence, to
which we now turn.

a term not occurring on the sentences of X. This new set Y is an essentially richer set than X.
For, as Tarski puts it,

“. . . it is obvious that the new extra-logical constant cannot be defined by means
of the terms of X. In fact the only sentence of Y in which this constant occurs is
logically provable, and thus true independently of the meaning of the specific terms
contained in it.” [Tarski, 1934, p. 309, fn. 1].

40In [Tarski, 1934], Tarski goes on to prove a general theorem concerning completeness with
respect to terms. First we need the notion of a monotransformable set of sentences:

Definition A set of sentences is monotransformable if for any two interpretations of this set
there is at most one relation which establishes the isomorphism of the two interpretations.

(Compare and contrast the notion of a categorical set of sentences: a set of sentences is
categorical if for any two interpretations of it there is at least one relation which establishes the
isomorphism of the two interpretations.)

Tarski’s theorem is as follows:
THEOREM 4. Every monotransformable set of sentences is complete with respect to its terms.
[Tarski, 1934, p. 314]).



26 Keith Simmons

4 SEMANTICS: DEFINABILITY, TRUTH, CONSEQUENCE

In three celebrated papers — “On definable sets of real numbers” [Tarski, 1931a],
“The concept of truth in formalized languages” [Tarski, 1933a], and “On the con-
cept of logical consequence” [Tarski, 1936b] — Tarski constructed precise defini-
tions of definability, truth, and logical consequence. We turn to these constructions
in Sections 4.1, 4.2 and 4.3 below. As we will see, at the core of each definition
is the semantic notion of satisfaction of a sentential function. These semantic
definitions were important contributions to the development of model theory, and
in 4.4 I make some historical remarks about model theory.

At the outset of [Tarski, 1931a], Tarski notes that mathematicians are extremely
wary of the notion of definability: “their attitude is one of distrust and reserve”
[Tarski, 1931a, p. 110]. Tarski finds this perfectly understandable: the semantical
notion of definability is ambiguous and subject to well-known paradoxes, such as
Richard’s, König’s, and Berry’s.41 Tarski makes similar remarks about truth:

‘For although the meaning of the term ‘true sentence’ in colloquial
language seems to be quite clear and intelligible, all attempts to define
this meaning more precisely have hitherto been fruitless, and many
investigations in which this term has been used and which started
with apparently evident premisses have often led to paradoxes and
antinomies. . . . The concept of truth shares in this respect the fate of
other analogous concepts in the domain of the semantics of language”.
[Tarski, 1933a, p. 152]42

Small wonder, then, that semantical concepts have an “evil reputation”. [Tarski,
1933a, p. 252]

In his papers on definability, truth and logical consequence, Tarski’s aim is to
find rigorous characterizations of these notions and thereby place them beyond
suspicion and ‘safe’ for theorists to use. Prior to Tarski, it was generally held that
these semantic notions were not the business of the mathematician or logician. Of
the notion of definability, Tarski writes:

“The distrust of mathematicians towards the notion in question is re-
inforced by the current opinion that this notion is outside the proper
limits of mathematics altogether.” [Tarski, 1931a, p. 110]

Tarski sought to reverse “the current opinion”. He identified a metamathemat-
ical task here regarding definability, that of

“making its meaning more precise, of removing the confusions and mis-
understandings connected with it, and of establishing its fundamental
properties. . . .” [Tarski, 1931a, p. 110]

Tarski continues:
41See Richard [1905], König [1905], and for Berry’s paradox, Russell [1908].
42For related remarks about the concept of logical consequence, see [Tarski, 1936b, p. 409].
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‘I believe I have found a general method which allows us to construct
a rigorous metamathematical definition of this notion.” [Tarski, 1931a,
p. 111]

Tarski later applied the same method to construct his definitions of truth and
logical consequence.

According to Tarski, the method allows the construction of definitions that
are not only “formally correct” but also “materially adequate”, in the sense that
they “grasp the current meaning of the notion as it is known intuitively” (p.129
VI). At the core of Tarski’s method is the notion of satisfaction of a sentential
function, which appears in print for the first time in [Tarski, 1931a], Tarski’s paper
on definable sets of real numbers. We will now focus on [Tarski, 1931a] and the
notion of definability.

4.1 Semantic definability

In [Tarski, 1931a], Tarski restricts his analysis of the notion of definability to just
one category of objects: sets of real numbers.

“The problem set in this article belongs in principle to the type of
problems which frequently occur in the course of mathematical inves-
tigations. Our interest is directed towards a term of which we can
given an account that is more or less precise in its intuitive content,
but the meaning of which has not at present been rigorously estab-
lished, at least in mathematics. We then seek to construct a definition
of this term which, while satisfying the requirements of methodological
rigour, will also render adequately and precisely the actual meaning of
the term. It was just such problems that the geometers solved when
they established the meaning of the terms ‘movement’, ‘line’, ‘surface’,
or ‘dimension’ for the first time. Here I present an analogous problem
concerning the term ‘definable set of real numbers’. (pp. 111–112)

Tarski works within the framework of the simple theory of types (where the
variables of the first order range over individuals, variables of the second order
range over sets of individuals, and so on). The notion of a sentential function
is introduced recursively. There are four primitive sentential functions denoted
by ‘∈’, ‘ν(x)’, ‘µ(x, y)’, ‘σ(x, y, z)’. The last three are special to the theory of
real numbers, where the first-order variables range over reals, and ‘ν(x)’ says that
x = 1, ‘µ(x, y)’ says that ‘x ≤ y’, and ‘σ(x, y, z)’ says that x+y = z. So the object
of Tarski’s investigation is the system of reals with the primitive concepts 1, ≤,
and +, or the system 〈R, 1,≤,+〉 for short. There are five fundamental operations
on sentential functions: negation, logical sum ‘+’ (disjunction), logical product ‘.’
(conjunction), universal quantification, and existential quantification. The set of
all sentential functions is the smallest set which contains the primitive functions
and is closed under the five operations.

Tarski explicitly distingishes system and metasystem:
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“For each deductive system it is possible to construct a particular sci-
ence, namely the ‘metasystem’, in which the given system is subjected
to investigation” (p. 116).

Tarski stresses that the notion of definability is relative — we can define, in
the metasystem, the notion of definability for the given system. Definability is
relative to a system — and if we ignore this characteristic, we will fall into para-
dox.43 In the present case, expressions such as ‘variable of the nth order’ and
‘sentential function’ are terms of the metasystem, applying as they do to particu-
lar expressions of the system under investigation. We can also introduce into the
metasystem arithmetical notions, like real number, set of real numbers, and so on.
The metasystem now has the resources to define the following phrase:

A finite sequence of objects satisfies a given sentential function.

In [Tarski, 1931a], Tarski makes no attempt to define this phrase precisely — a
rigorous treatment is given in [Tarski, 1933a]. Instead, Tarski presents some simple
illustrations. For example, the primitive sentential function ‘σ(x, y, z)’ is satisfied
by all sequences of three real numbers x, y, z such that x = y + z; the sentential
function ‘ν(x).ν(y).µ(y, z)’ is satisfied by all sequences of three real numbers x, y, z
such that x = 1 = y ≤ z; and the sentential function ‘∃z∃u(σ(x, y, z).µ(u, z).ν(u)’
is satisfied by sequences of two real numbers x and y where x ≥ y+1. Tarski notes
that these examples indicate the possibility of establishing a 1-1 correspondence
between the members of the sequence and the free variables in the sentential
function. In the limit case, a sentential function without free variables — that
is, a sentence — “is satisfied either by the empty sequence or by no sequence,
according as the sentence is true or false” (p. 117).

Of special significance are sentential functions with one free variable, where
instead of (unit) sequences, we can speak of objects satisfying the given function.
We are led naturally to the notion of a definable set:

“Consequently, a function which contains a variable of order 1 as its
only free variable determines a certain set of individuals, which, in
particular, may be a certain set of real numbers. The sets thus de-
termined by sentential functions are precisely the sets definable in the
arithmetical system considered.” (p. 118)

43On p. 119, Tarski observes that there are only denumerably many definable sets (because
there are only denumerably many sentential functions), but non-denumerably many sets of num-
bers. So there exist undefinable sets. Tarski goes on:

“More than that, it is known that, with every denumerable family F of sets of
numbers, a uniquely determined set F∗ can be correlated that does not belong to
F ; taking for F the family of all definable sets, we get F∗, an example of a set
of numbers defined in terms of the metasystem, but not definable in the system
itself.” (p. 119)

If we ignore the system/metasystem distinction, we will be landed in contradiction and paradox.
(In a footnote added later, Tarski refers the reader to [Tarski, 1948b, pp. 108f] for a precise
definition of F∗.)
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Tarski now states the metamathematical definition of definable sets of real numbers
as follows:

(M) A set X is a definable set if there is a sentential function which contains some
variable of order 1 as its only free variable, and which satisfies the condition
that, for every real number x, x ∈ X if and only if x satisfies this function.
(p. 118)

For example, the following sets are definable: the set {0}, the set of all positive re-
als, and the set of all reals x such that 0 ≤ x ≤ 1; these sets are determined respec-
tively by the sentential functions ‘σ(x, x, x)’, ‘¬σ(x, x, x).∃y(µ(y, x).σ(y, y, y))’,
and ‘∃y∃z(µ(y, x).σ(y, y, y).µ(x, z).ν(z))’.

So Tarski sketches here, for the first time, a rigorous definition of definability
in metamathematical terms - in particular, in terms of the metamathematical
notion of satisfaction. But now Tarski takes further step: he offers a (partial)
reconstruction of the notion of definability in purely mathematical terms.44 Tarski
writes:

“Under this new definition the notion of definability does not differ
from other mathematical notions and need not arouse either fears or
doubts; it can be discussed entirely within the realm of normal math-
ematical reasoning.” (p. 111)

This purely mathematical reconstruction rests on the following observation: each
sentential function determines a certain set of finite sequences, namely, the set
of all finite sequences that satisfy it. So we can replace the metamathematical
concept of a sentential function by its mathematical analogue — the notion of a
set of sequences.

In particular, we can introduce the primitive sets of sequences, those which are
determined by the primitive sentential functions. Tarski goes on to define five
operations on sets of sequences: complementation, addition, multiplication, and
summation and multiplication with respect to the kth members of the sequences,
corresponding to the five operations on sentential functions.45 Then the family (or
set) Df of definable sets of finite sequences of real numbers may be defined along
the following lines:

Df is the intersection of all the families of sets K which satisfy the
following conditions: (i) the primitive sets belong to K; (ii) K is closed
under the five operations.46

44No total reconstruction is possible on pain of paradox; Tarski’s partial reconstruction pro-
vides a mathematical definition of definable sets of individuals of order n, for a given n. The
construction is carried out in detail for n = 1, and outlined for n = 2; this suffices, says Tarski,
to make clear the method for all higher levels.

45The operations of complementation, addition, multiplication correspond to the sentential
operations of negation, disjunction, and conjunction; they also correspond to the usual Boolean
operations. The operations of summation and multiplication with respect to the kth terms
correspond to the existential and the universal quantifiers respectively.

46See Definition 9 (p. 128) for a precise formulation.
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The family Df — characterized in purely mathematical terms — is exactly the
family of sets of sequences which are determined by sentential functions. We
have moved from metamathematical notions (sentential functions, satisfaction) to
mathematical notions (sets of sequences, operations on sets of sequences). Now
we can move on to a mathematical definition of the notion definable set of reals.
Among the sets of sequences that belong to Df there are all the sets U of unit
sequences. For any such U , form the set U∗ of the members of U ’s unit sequences.
U∗ is a definable set of real numbers. The set D of all these U∗s is the family of all
definable sets of real numbers.47 The set D is identical to the set of definable sets of
real numbers as metamathematically defined by (M). Here, then, we have reached
a purely mathematical characterization of the notion of a definable set of real
numbers. The fact that it coincides with the metamathematical characterization
demonstrates its material adequacy.

Tarski goes on to state two very important theorems about Df and D, and
sketches their proofs.

THEOREM 6. A set S of sequences of real numbers is a member of Df iff S is a
finite sum of finite products of elementary linear sets.48

THEOREM 7. A set X of real numbers belongs to the set D iff X is the sum of
a finite number of intervals with rational end-points.49

Theorem 6 has a special significance. Given the correlation between (mathemat-
ical) sets of sequences and (metamathematical) sentential functions, and between
Boolean operations on sets and Boolean operations on sentential functions, there is
a metamathematical analogue of Theorem 6. And this metamathematical theorem
leads to metalogical results of great moment: the theory of the reals 〈R, 1,≤,+〉
is complete and decidable. More on this in Section 5.1 below.50

47See Definition 10 (p. 128) for a rigorous formulation of the definition of definable sets of
individuals.

48For the notion of an elementary linear set, we need the notion of a linear polynomial with
integral coefficients, exemplified by 3x+ 10y+ 7z+ 2. Associated with this polynomial is a linear
equation

(i) 3x+ 10y + 7z + 2 = 0 and a linear inequality

(ii) 3x+ 10y + 7z + 2 > 0.

Observe that associated with (i) are sequences of reals, each of which is a solution to (i). One
such sequence is 〈2,−1.5, 1〉, since x = 2, y = −1.5 and z = 1 provides a solution to (i). We can
make a parallel observation about (ii).

An elementary linear set is a set of all sequences of real numbers which are solutions either of
a linear equation of the type of (i), or a linear inequality of the type of (ii). (For a more rigorous
characterization, see Tarski [Tarski, 1931a, p. 132].)

49An interval with rational end points is a set of one of the following types, where a and b are
arbitrary rational numbers: {x|x = a}, {x|x > a}, {x|x < a}, or {x|a < x < b}.

50Theorems 6 and 7 also have significance for analytic geometry. Near the end of [Tarski, 1931a,
pp. 141–2], Tarski reports that Kuratowski drew his attention to a geometric interpretation of
the concepts and operations of [Tarski, 1931a]. (For example, on this interpretation the operation
of summation with respect to the kth members may be taken as projection parallel to the axis
Xk.) Interpreted in this way, Theorems 1 and 2 take the form of certain theorems of analytic
geometry. This geometric interpretation is investigated in Kuratowski and Tarski’s [31b].
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4.2 Truth

Tarski’s seminal monograph ‘The concept of truth in formalized languages’ [Tarski,
1933a], and his later informal summary ‘The Semantic Conception of Truth’
[Tarski, 1944] are devoted to a single problem — the definition of truth. Tarski
seeks a definition of truth that does justice to the classical Aristotelian conception
of truth:

“To say of what is that it is not, or of what is not that it is, is false,
while to say of what is that it is, or of what is not that it is not, is
true.”51

Tarski writes:

“Let us start with a concrete example. Consider the sentence “snow
is white”. We ask the question under what conditions this sentence is
true or false. It seems clear that if we base ourselves on the classical
conception of truth, we shall say that the sentence is true if snow is
white, and that it is false if snow is not white. Thus, if the definition
of truth is to conform to our conception, it must imply the following
equivalence:

The sentence “snow is white” is true if, and only if, snow is white.”
[1944, p. 667]

The account is readily generalized:

“Let us consider an arbitrary sentence: we shall replace it by the letter
‘p’. We form the name of this sentence and we replace it by another
letter, say ‘X ’. We ask now what is the logical relation between the
two sentences “X is true” and ‘p’. It is clear that from the point of
view of our basic conception of truth these sentences are equivalent.
In other words, the following equivalence holds:

(T) X is true if, and only if, p. [Tarski, 1944, p. 668]

Tarski continues:

“Now at last we are able to put into a precise form the conditions under
which we will consider the usage and definition of the term “true” as
adequate from the material point of view: we wish to use the term
“true” in such a way that all equivalences of the form (T) can be
asserted, and we shall call a definition of truth “adequate” if all these
equivalences follow from it.” [Tarski, 1944, p. 668]

Here, then, is an informal expression of Tarski’s famous adequacy condition on a
definition of truth.

However, Tarski stresses that
51Aristotle, Metaphysics, Γ, 7, 27.
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“the attempt to construct a correct semantical definition of the expres-
sion ‘true sentence’ meets with very real difficulties.” [Tarski, 1933a,
p. 162]

This is primarily because of the well-known Liar paradox. Tarski presents the
Liar along the following lines. Consider the following sentence:

The sentence printed in this chapter on p. 43, lines 18–19, is not true.

Let the letter ‘s’ be an abbreviation of this sentence. Now, we may assert the
following instance of schema (T):

‘s’ is true iff the sentence printed in this chapter on p. 43, lines 10–11,
is not true.

We can establish empirically that

‘s’ is identical to the sentence printed in this chapter on p. 43, lines
10–11, is not true.

By the logic of identity, we obtain

‘s’ is true iff ‘s’ is not true.

And we arrive at a contradiction.
Tarski identifies two assumptions that are essential to the construction of the

Liar. The first assumption is this:

“(I) We have implicitly assumed that the language in which the anti-
nomy is constructed contains, in addition to its expressions, also the
names of these expressions, as well as semantic terms such as the term
“true” referring to sentences of this language; we have also assumed
that all sentences which determine the adequate usage of this term can
be asserted in the language.” [Tarski, 1944, p. 20]

Tarski calls a language with these properties “semantically universal” [Tarski,
1969, p. 89],52 or “semantically closed” [Tarski, 1944, p. 20]. The second assump-
tion is this:

“(II) We have assumed that in this language the ordinary laws of logic
hold.” [Tarski, 1944, p. 20]

A possible response is to reject II and give up classical logic. For Tarski, this is
not an option:

“It would be superfluous to stress here the consequences of rejecting
the assumption II, that is, of changing our logic (supposing this were
possible) even in its more elementary and fundamental parts. We thus
consider only the possibility of rejecting the assumption I.” [Tarski,
1944, p. 21]

52[Tarski, 1969] is a semi-popular account of the notions of truth and proof.
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And so Tarski concludes that we should seek a definition of truth for languages
that are not semantically universal.

This leads to a distinction between object language and metalanguage:

“The first of these languages is the language which is ‘talked about’
and which is the subject-matter of the whole discussion; the definition
of truth which we are seeking applies to the sentences of this language.
The second is the language in which we ‘talk about’ the first language,
and in terms of which we wish, in particular, to construct the definition
of truth for the first language.” [Tarski, 1944, pp. 22–23]

Tarski points out that the terms ‘object language’ and ‘metalanguage’ apply only
in a relative way:

“If, for instance, we become interested in the notion of truth applying to
sentences, not of our original object language, but of its metalanguage,
the latter becomes automatically the object language of our discussion;
and in order to define truth for this language, we have to go to a new
metalanguage — so to speak, to a metalanguage of a higher level. In
this way we arrive at a whole hierarchy of languages.” [Tarski, 1944,
p. 22]

So in Tarski’s view we can hope to construct a definition of truth for a language
L only if L is not semantically universal, only if there is a metalanguage for L
in which we can couch the definition. But now, according to Tarski colloquial or
natural languages (such as English or Polish) are semantically universal. In fact,
according to Tarski, we can say something stronger: they are universal, in the
sense that they can say everything that can be said. Tarski writes:

“A characteristic feature of colloquial languages (in contrast to various
scientific languages) is its universality. It would not be in harmony with
the spirit of this language if in some other language a word occurred
which could not be translated into it; it could be claimed that ‘if we
can speak meaningfully about anything at all, we can also speak about
it in colloquial language” [Tarski, 1933a, p. 164]

In the same vein, Tarski remarks on the “all-comprehensive, universal character”
of natural language and continues

“The common language is universal and is intended to be so. It is
supposed to provide adequate facilities for expressing everything that
can be expressed at all, in any language whatsoever; it is continually
expanding to satisfy this requirement.” [Tarski, 1969, p. 89]

It is the universality of natural languages, says Tarski, “which is the primary
source of all semantical antinomies” [Tarski, 1933a, p. 164]. For if a language can
say everything there is to say, then in particular, it can say everything there is
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to say about its own semantics. Such a language is semantically universal. But
a semantically universal language, together with the usual laws of logic, leads to
semantic paradox (see [Tarski, 1933a, pp. 164–5]). Tarski concludes:

“The very possibility of a consistent use of the expression ‘true sen-
tence’ which is in harmony with the laws of logic and the spirit of
everyday language seems to be very questionable, and consequently
the same doubt attaches to the possibility of constructing a correct
definition of this expression.” ([Tarski, 1933a, p. 165]. See also p. 267)

So Tarski turns away from natural language.53 He writes:

“I now abandon the attempt to solve our problem for the language
of everyday life and restrict myself henceforth entirely to formalized
languages.” [Tarski, 1933a, p. 165]

For the sake of clarity, Tarski constructs a definition of truth for one particular
formal language — though as he points out, the method applies generally to an
extensive group of formalized languages. Tarski chooses as his object language the
calculus of classes. This calculus is one interpretation of Boolean algebra, and a
particularly simple fragment of mathematical logic. There are four constants —
negation (‘N ’), disjunction or logical sum (‘A’), the universal quantifier ‘Π’), and
inclusion (‘I’) — and an infinite supply of variables (‘x′’, ‘x′′’, ‘x′′′’) which range
over classes, and which may be arranged in a sequence (so that we may speak
of the kth variable). Composite expressions, such as Ix′′x′′′, are formed in the
obvious way.

The concept of truth for the calculus of classes is to be defined in a metalan-
guage. Accordingly,

“the proper domain of the following considerations is not the language
of the calculus of classes itself but the corresponding metalanguage.
Our investigations belong to the metacalculus of classes developed in
this metalanguage.” [Tarski, 1933a, p. 169]

The metalanguage includes the logical expressions ‘not’, ‘or’, ‘for all’, and ‘is in-
cluded in’, which have the same meanings as the constants of the object language
— so the object langage can be translated into the metalanguage. The met-
alanguage includes further expressions of a general logical character, including
set-theoretical expressions (such as ‘is an element of’, ‘class’ and ‘natural num-
ber’) and expressions from the logic of relations (such as ‘domain’ and ‘ordered
n-tuple’). There is one further important category of expressions in the metalan-
guage: the expressions of a structural-descriptive character. These are the names

53Despite Tarski’s own misgivings, others have been less pessimistic — for example, Davidson
in [Tarski, 1967], and a number of authors who offer a ‘Tarskian’ approach to the Liar in the
sense that they attribute a hierarchical structure to natural languages (see, for example, Parsons
[1974]], Burge [1979], Barwise and Etchemendy [1987], Gaifman [1992], Koons [1992]], Glanzberg
[2001]).
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of expressions of the object language. Tarski mentions the following names in par-
ticular: ‘the negation sign’ (abbreviated by ‘ng’), ‘the sign of logical sum’ (‘sm’),
‘the sign of the universal quantifier’ (‘un’), ‘the inclusion sign’ (‘in’), ‘the kth vari-
able’ (‘vk’), and ‘the expression which consists of two successive expressions x and
y’ (‘x�y’). Tarski observes that the metalanguage contains both an individual
name and a translation of every expression (and so every sentence) of the object
language; this is crucial for the construction of the definition of truth.

Tarski next turns to the metatheory, and presents the axiom system of the
metalanguage. The axioms divide into two kinds. First there are the general
logical axioms which provide a sufficiently comprehensive system of mathematical
logic (we may take, for example, the axioms of Principia Mathematica). Axioms of
the second kind deal with the structural-descriptive concepts. In his introduction
to [83a], Corcoran stresses the significance of these axioms.

“In the ‘Wahrheitsbegriff’, Tarski isolates as a primitive notion the
fundamental operation of concatenation of strings and he presents, em-
ploying concatenation, the first axiomatic codification of string theory,
thereby providing deductive foundations of scientific syntax.” [Tarski,
1983a, p. xxi]

Tarski writes:

“What we call metatheory is, fundamentally, the morphology of lan-
guage — a science of the form of expressions - a correlate of such parts
of traditional grammar as morphology, etymology, and syntax.” (p.
251)

The axioms are as follows:

Axiom 1. ng, sm, un, and in are expressions, no two of which are identical.

Axiom 2. vk is an expression if and only if k is a natural number distinct from
0; vk is distinct from ng, sm, un, in, and also from vl if k �= l.

Axiom 3. x�y is an expression if and only if x and y are expressions; x�y is
distinct from ng, sm, un, in, and from each of the expressions vk.

Axiom 4. If x, y, z, and t are expressions, then we have x�y = zt if and only if
one of the following conditions is satisfied: (a) x = z and y = t; (b)
there is an expression u such that x = zu and t = u�y; (c) there is an
expression u such that z = x�u and y = u�t.

Axiom 5. (The principle of induction) Let X be a class which satisfies the fol-
lowing conditions: (a) ng ∈ X , sm ∈ X , un ∈ X , and in ∈ X ; (b) if
k is a natural number distinct from 0, then vk ∈ X ; (c) if x ∈ X and
y ∈ X , then x�y ∈ X . Then every expression belongs to the class X .
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Axiom 5 tells us in a precise way that every expression consists of a finite number
of signs.

In a series of definitions that follow these axioms (pp. 175–6), Tarski introduces
three fundamental operations — negation (‘x̄’ denotes the negation of x), dis-
junction (‘x+ y’ denotes the disjunction of x and y), and universal quantification
(denoted by ‘∩’). Conjunction is defined in the usual way in terms of negation
and disjunction, and the existential quantifier — denoted by ‘U ’ — is defined in
terms of the universal quantifier and negation. By means of these operations,
compound expressions are formed from simpler ones. This leads to a definition of
the notion of a sentential function. The simplest sentential function is an inclu-
sion, an expression of the form (in�vk)�vl, or ιk,l for short. Compound sentential
functions are formed by applying the three operations to inclusions any number
of times. Sentences are then defined as a special case of sentential functions: they
are sentential functions with no free variable. Corcoran remarks that Tarski here
provides

“the first formal presentation of a generative grammar” [Tarski, 1983a,
p. xxi]54

Tarski now turns to the axioms for the object language, the calculus of classes.
Among these are axioms that suffice for the sentential calculus, in which nega-
tion and disjunction are the only constants. The remaining axioms form a system
for the calculus of classes, a simplified version of Huntington’s system [Hunting-
ton, 1904, p. 297]. Tarski completes the preparations for his definition of truth
by defining a number of basic metamathematical notions, including consequence,
theorem, deductive system, consistency, and completeness (pp. 180–85).

The definition of true sentence in the language of the calculus of classes is carried
out in Section 3 of [Tarski, 1933a]. At the outset of this section, Tarski returns to
his adequacy condition and now states it in a more precise way. (In what follows,
S is the class of all meaningful sentences of the language of the calculus of classes.)

“Convention T. A formally correct definition of the symbol ‘Tr’, for-
mulated in the metalanguage, will be called an adequate definition of
truth if it has the following consequences:

(α) all sentences which are obtained from the expression

54Corcoran continues:

‘It is to be regretted that many linguists, philosophers, and mathematicians know
so little of the history of the methodology of deductive science that they attribute
the basic ideas of generative grammar to linguists working in the 1950s rather than
to Tarski (and other logician/methodologists) working in the early 1930s.” [Tarski,
1983a, p. xxi]

Corcoran also remarks that although other authors had used ideas about scientific syntax prior to
[Tarski, 1933a], Tarski was the first to present these ideas in a rigorous way — another instance
where Tarski makes formally precise ideas already informally in use (see [Tarski, 1983a, p. xxi,
fn. 13].
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‘x ∈ Tr’ if and only if p’ by substituting for the symbol ‘x’ a structural-
descriptive name of any sentence of the language in question and for the
symbol ‘p’ the expression which forms the translation of this sentence
into the metalanguage;

(β) the sentence ‘for any x, if x ∈ Tr then x ∈ S’ (in other words ‘Tr
⊆ S’).” (pp. 187–8)

Tarski observes that if the object language contained only a finite number of sen-
tences, it would be straightforward to produce an adequate definition. In schematic
form, it would look like this:

x ∈ Tr iff (x = x1 and p1) or x = x2 and p2 or . . . or x = xn and pn

where ‘x1’, ‘x2’, . . . ‘xn’ are replaced by structural-descriptive names of sentences
of the object language, and ‘p1’, ‘p2’, . . . ‘pn’ by the corresponding translations
of these sentences into the metalanguage. But if the object language contains
infinitely many sentences, as is the case with the language of the calculus of classes,
then we cannot proceed in this ‘list-like’ way — we cannot formulate infinitely
long definitions in the metalanguage. Consequently, Tarski turns to the recursive
method. Truth is to be defined in terms of the more basic notion of satisfaction,
and satisfaction is defined recursively.

We saw above that in [Tarski, 1931a] Tarski sketches the notion of satisfac-
tion. But now, for the first time in print, Tarski provides a rigorous definition of
satisfaction (specific, of course, to the language of the calculus of classes).

“Definition 22 The sequence f satisfies the sentential function x if and
only if f is an infinite sequence of classes and x is a sentential function
and if f and x are such that either (α) there exist natural numbers k
and 1 such that x = ιk,l and fk ⊆ fl; (β) there is a sentential function
y such that x = ȳ and fdoes not satisfy the function y; (γ) there are
sentential functions y and z such that x = y+z and f either satisfies y
or satisfies z; or finally (δ) there is a natural number k and a sentential
function y such that x = ∩ky and every infinite sequence of classes
which differs from f in at most the kth place satisfies the function y.”
(p. 193)

It is remarkable how close this definition is to contemporary textbook definitions
— that is a tribute to the precision and clarity of Tarski’s work.

The definition of truth now follows. Members of sequences correspond to vari-
ables with respect to their indices. Whether or not a sequence satisfies a sentential
function depends only on the members of the sequence that correspond to the free
variables of the sentential function. In the limit case, where the sentential function
has no free variables, the members of the sequence do not matter at all. As Tarski
puts it:
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“Thus in the extreme case, when the function is a sentence, and so
contains no free variable (which is in no way excluded by Def. 22),
the satisfaction of a function by a sequence does not depend on the
properties of the terms of the sequence at all. Only two possibilities
then remain: either every infinite sequence of classes satisfies a given
sentence, or no sequence satisfies it. . . . The sentences of the first kind
. . . are the true sentences ; those of the second kind . . . can correspond-
ingly be called the false sentences.” (p. 194)

So we arrive at Tarski’s definition of truth:

“Definition 23 x is a true sentence — in symbols x ∈ Tr — if and only
if x ∈ S and every infinite sequence of classes satisfies x.” (p. 195)

This definition is clearly formally correct - so the question now is whether it is
materially adequate. The answer is in the affirmative: the definition is adequate
in the sense of Convention T. Tarski points out that a rigorous proof of this would
require a meta-metatheory, since it is a result about the metatheory. To avoid
any such shift of levels, Tarski adopts an alternative method — the “empirical
method”, according to which we confirm the adequacy of the definition by way
of concrete examples. The example Tarski considers is the sentence ∩1U2ι1,2. By
successive applications of the relevant clauses of Definition 22, it is straightforward
to derive:

∩1U2ι1,2 ∈ Tr iff for every class a there is a class b such that a ⊆ b.55

This is a so-called ‘T-sentence’, one of the sentences mentioned in clause (α) of
Convention T. And there is nothing special about this derivation - we can proceed
in an analogous way with any sentence of the object language. Tarski concludes:

“We have succeeded in doing for the language of the calculus of classes
what we tried in vain to do for colloquial language: namely, to construct

55Following Tarski (p. 196), observe first that the sentential function ι1,2 is satisfied by exactly
those sequences f such that f1 ⊆ f2. So the negation ι1,2 is satisfied by exactly those sequences
f such that f1 ⊆ f2. Consequently,

“a sequence f satisfies the [sentential] function ∩2ι1,2 if every sequence g which
differs from f in at most the 2nd place satisfies the function ι1,2 and thus verifies the
formula g1 ⊆ g2. Since g1 = f1 and the class g2 may be quite arbitrary, only those
sequences f satisfy the function ∩2ι1,2 which are such that f1 ⊆ b for any class b. If
we proceed in ananalogous manner, we reach the result that the sequence f satisfies
the function ∪2ι1,2, i.e. the negation of the function ∩2ι1,2 only if there is a class b
for which f1b holds. Moreover the sentence ∩1U2ι1,2 is only satisfied (by an arbitrary
sequence f) if there is for an arbitrary class a, a class b for which a ⊆ b. Finally by
applying Def. 23 we at once obtain one of the theorems which were described in the
condition (α) of the convention T: ∩1U2ι1,2 ∈ Tr iff for every class a there is a class
b such that a ⊆ b.

From this we infer without difficulty, by using the known theorems of the calculus of
classes, that ∩1U2ι1,2 is a true sentence.” (p. 196)
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a formally correct and materially adequate semantical definition of the
expression ‘true sentence’.” (pp. 208–9, Tarski’s emphasis)

Although Tarski has defined truth for a specific language, the method of con-
struction applies to ‘many other formalized languages” (p. 209), as Tarski shows
in Section 4. For each particular object language and object theory, we will need
to construct a corresponding metalanguage and metatheory. The construction will
follow the pattern indicated in the case of the calculus of classes. The metalan-
guage will always contain three groups of expressions: expressions of a general
logical kind, expressions with the same meaning as the constants of the object
language, and expressions of the structural-descriptive type. And the axiom sys-
tem of the metatheory will include three groups of axioms: axioms of a general
logical kind, axioms which provide for the translations into the metalanguage of all
theorems of the object theory, and axioms for the structural-descriptive concepts.
We will go on to define the notions of ‘sentential function’, ‘sentence’ and ‘satis-
faction’, and define the notion of ‘true sentence’ in terms of satisfaction. Tarski
concludes:

“A. For every formalized language a formally correct and materially
adequate definition of true sentence can be constructed in the metalan-
guage with the help only of general logical expressions, of expressions
of the language itself, and of terms from the morphology of language -
but under the condition that the metalanguage possesses a higher or-
der than the language which is the object of investigation.” (postscript
to [Tarski, 1933a, p. 273])

This condition on the metalanguage is crucial. For:

“B. If the order of the metalanguage is at most equal to that of the
language itself, such a definition cannot be constructed.” (p. 273)56

In particular, if the metalanguage is identical to, or interpretable in the object
language, it is impossible to construct an adequate definition of truth. In Section

56The order of a language is the smallest ordinal number which is greater than the orders of all
variables occurring in the language (see p. 270). Variables ranging over individuals are assigned
the order 0; variables ranging over classes of individuals and over relations between individuals
are assigned the order 1; variables ranging over classes of classes of individuals and over relations
between classes of individuals are assigned the order 2; and so on. The order of the language of
the calculus of classes is 2, since its variables (ranging over classes of individuals) are of order 1.
The language of the general theory of classes (introduced in Section 5) is a language of infinite
order. Its variables range over classes, classes of classes, classes of classes of classes, and so on
— and so its order is ω. (For the notion of the order of an expression, see the Postscript pp.
269–272, which revises Tarski’s earlier account in section 4, p. 218).

Tarski’s summary conclusion A from the Postscript is a significant revision of his summary
in Section 6. In Sections 4 and 5, Tarski works with Husserl’s notion of semantical category,
introduced by Lesniewski into metamathematical investigations (Tarski cites Lesniewski [1929],
especially pp. 14 and 68.) In the Postscript Tarski dispenses with the theory of semantical
categories, and as a consequence finds that “the range of the results obtained has been essentially
enlarged, and at the same time the conditions for their application have been made more precise”
(p. 273).
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5, Tarski takes as object language the language of the general theory of classes,
and considers a metalanguage which may be interpreted in the object language
— so that every sentence of the metalanguage is correlated with an equivalent
sentence of the object language. Suppose that under these circumstances we can
construct in the metalanguage a correct definition of truth. Tarski writes:

“It would then be possible to reconstruct the antinomy of the liar in the
metalanguage, by forming in the language itself a sentence x such that
the sentence of the metalanguage which is correlated with x asserts
that x is not a true sentence.”(p. 248)

Let us take a close look at Tarski’s reconstruction of the liar in the metalanguage.
We start with the language of the general theory of classes. The variables of
this language range over individuals, classes of individuals, classes of classes of
individuals, and so on. Following Tarski, let ‘n’ be a variable ranging over classes
of classes of individuals, and treat numbers in the Russell–Whitehead way. Then
the range of ‘n’ includes the natural numbers.57 Tarski observes that we may
construct a sentential function ιk with sole free variable ‘n’ which says, given a
natural number k, that the class whose name is represented by ‘n’ is identical with
k (see p. 249).

Tarski further observes that it is straightforward to set up a correspondence
between the expressions of the language and the natural numbers. That is, we can
define in the metalanguage an infinite sequence ∅ of expressions in which every
expression occurs exactly once; we will let ‘∅n’ denote the nth expression in the
sequence. Consequently, we can correlate with every operation on expressions an
operation on natural numbers, with every class of expressions a class of natural
numbers, and so on. “In this way”, Tarski writes,

“the metalanguage receives an interpretation in the arithmetic of the
natural numbers and indirectly in the language of the general theory
of classes.” (pp. 249–50)58

That is, the metalanguage is interpretable in the object language.
Now suppose that we have defined in the metalanguage the class Tr of true

sentences of the object language. Let the symbol ‘U ∗ y’ denote the existential
quantification of the sentential function y with respect to the variable ‘n’. Consider
the expression:

U ∗ (ιn.∅n) �∈ Tr.

The expression ‘ιn.∅n’ denotes the conjunction of the sentential functions denoted
by ιn and ∅n. And ‘U ∗ (ιn.∅n)’ denotes the existential quantification of this

57See Tarski p. 233, fn.1. For example, the number 1 is the class of all classes which have
exactly one individual as a member.

58The theory of natural numbers can be developed in the general theory of classes. Tarski
writes that the general theory of classes “suffices for the formulation of every idea which can be
expressed in the whole language of mathematical logic” (pp.241–2).
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conjunction with respect to ‘n’. As a whole, the expression ‘U ∗ (ιn.∅n) �∈ Tr’ says
that this existential quantification is not a true sentence of the object language.

The expression ‘U ∗ (ιn.∅n) �∈ Tr’ itself is a sentential function of the meta-
language with ‘n’ as its sole free variable. Given that we can always correlate
sentential functions with arithmetical functions, this sentential function may be
correlated with another function equivalent to it but expressed solely in the terms
of arithmetic. Let us schematically refer to this arithmetical function by ‘ψ(n)’.
We have:

1. for any n,U ∗ (ιn.∅n) �∈ Tr if and only if ψ(n).

Since the general theory of classes provides a foundation for the theory of natural
numbers, it follows that ‘ψ(n)’ is a sentential function of the object language. So
it will appear in the sequence ∅ — let it appear at the kth place. Now instantiate
(1) to ‘k’:

2. U ∗ (ιk.∅k) �∈ Tr if and only if ψ(k).

Remember that we have assumed that the definition of Tr is adequate. Accord-
ingly, condition (α) of Convention T holds. Now U ∗ (ιk.∅k) is a structural-
descriptive name of a sentence of the object language. The sentence that it names
says the following: “there is an n such that n = k and ψ(n)”, or more simply,
“ψ(k)”. So by condition (α) we obtain:

3. U ∗ (ιk.∅k) �∈ Tr if and only if ψ(k).

And (2) and (3) yield a contradiction.
Notice that ‘ψ(k)’, a sentence of the object language, is correlated with ‘U ∗

(ιk.∅k) �∈ Tr’, a sentence of the metalanguage, and the latter says of the former
that it is not true. Thus, to repeat Tarski’s words, we have formed in the object
language itself “a sentence x such that the sentence of the metalanguage which
is correlated with x asserts that x is not a true sentence.” In reconstructing the
Liar in this way, Tarski has used the so-called diagonal argument ; the distinctive
‘diagonal’ step is the inference to (2), where we replace the variable ‘n’ in the
correlates ‘U ∗ (ιn.∅n) �∈ Tr’ and ‘ψ(n)’ by k, the index of ‘ψ(n)’ in ∅.59 One can
also see close analogies with the heterological paradox, generated by the phrase
‘is not true of itself’ or ‘heterological’ for short. Tarski pursues this analogy in
[Tarski, 1944, p. 371, fn. 11]].

We now have a sketch of the proof of Tarski’s undefinability theorem for the
specific case of the general theory of classes. Tarski states the result as follows:

“Theorem 1 (α) In whatever way the symbol ‘Tr’, denoting a class of
expressions, is defined in the metatheory, it will be possible to derive
from it the negation of one of the sentences which were described in
the condition (α) of the convention T;

59For more on the diagonal argument, the Liar, and Tarski’s theorem, see Simmons [Simmons,
1993, Chapter2].
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(β) assuming that the class of all provable sentences of the metalan-
guage is consistent, it is impossible to construct an adequate definition
of truth in the sense of convention T on the basis of the metatheory.”
(p. 247)

Clearly, (β) follows immediately from (α). For a general statement of the the-
orem, recall Tarski’s summary conclusion in the Postscript:

“B. If the order of the metalanguage is at most equal to that of the
language itself, such a definition cannot be constructed.” (p. 273)

A typical contemporary formulation of Tarski’s theorem is likely to dispense with
any mention of a metalanguage; for example,

Given a language L of a theory that includes first-order number theory,
no adequate definition of truth in L can be given in L.

Of his proof of Theorem 1, Tarski writes “We owe the method used here to Gödel”
(fn. 1, p. 247). Indeed, (α) does not really involve truth at all.60 If we replace the
symbol ‘Tr’ by the more neutral symbol ‘φ’, (α) tells us that there is a sentence
p with a structural-descriptive name x such that the sentence ‘¬(φ(x) ↔ p)’ and
hence ‘φ(x) ↔ ¬p)’ is derivable from the metatheory. If we interpret φ not as ‘true’
but as ‘provable’, (α) is essentially an instance of Gödel’s first incompleteness the-
orem. Originally, Tarski’s paper did not contain Theorem 1, but instead “certain
suppositions in the same direction” (fn. 1, p. 247), based partly on Tarski’s own
work and partly on a short report of Gödel’s [Tarski, 1930b]. Theorem 1 and the
sketch of its proof were added in press, after Tarski became acquainted with Gödel
[Gödel, 1931] and was convinced that Gödel’s results carried over to the general
theory of classes.61

In notes added to [Tarski, 1933a], Tarski is at pains to set the historical record
straight. There was some need for this. For example, Carnap erroneously wrote
that Tarski’s investigations were carried out “in connection with those of Gödel”
(Carnap [Tarski, 1935]). In fact Tarski arrived at the final formulation of his
definition of truth in 1929. But the paper was not published until 1933 (in Polish)
— and only received more general attention when it was published in German
in 1935. Tarski emphasizes that the methods and results of [Tarski, 1933a] were
entirely his own, with two noted exceptions — Section 2 (on the problems of
defining truth in natural language) was directly influenced by Lesniewski, and the
method of the proof of Theorem 1 was drawn from Gödel [Gödel, 1931]. It is
noteworthy that Tarski’s discussion of the arithmetization of the metalanguage
and metatheory proceeded quite independently of Gödel’s work (though Gödel
developed the method far more completely).

60This point is stressed by Vaught in [Tarski, 1986, p. 871].
61These negative results about truth and provability are informally discussed in Tarski [Tarski,

1969].



Tarski’s Logic 43

*******

Tarski’s theory of truth has received far more philosophical attention than any-
thing else in Tarski’s corpus. It is without doubt the work for which Tarski is best
known to philosophers. It is also the subject of Tarski’s most sustained philosoph-
ical discussion, which comprises the second half of [Tarski, 1944] (under the title
of ‘Polemical Remarks’). We turn now to some of the philosophical issues raised
by Tarski’s work on truth.

(i) There is disagreement over the point of Tarski’s definition of truth. What
is Tarski’s aim? To this question, I believe there is a clear answer in Tarski’s
writings. On the one hand, truth is a notion that is fundamental to science, logic
and metamathematics; on the other hand, it leads to paradoxes and antinomies,
earning itself an “evil reputation”. We must then find a way of defining truth
that will preserve its intuitive content but place it beyond suspicion. Tarski seeks
a definition of truth in terms that no one could question. And for Tarski, those
terms are the terms of logic, the terms of the object language, and the structural-
descriptive terms:

“. . . the semantical concepts are . . . reduced to purely logical concepts,
the concepts of the language being investigated and the specific con-
cepts of the morphology of language” [Tarski, 1936a, p. 406]

Moreover, this reduction is strongly suggested by the T-sentences. According
to Tarski, the T-sentence

‘snow is white’ is true if and only if snow is white is a partial definition of
truth — and it contains a logical term, a sentence of the object language, and a
structural-descriptive name of that sentence. As we saw earlier, Tarski s†uggests
that for an object language with finitely many sentences, we need only list all the
associated T-sentences for a complete definition of truth. This will not work, of
course, for languages with infinitely many sentences — for those, Tarski uses the
recursive method. But still, says Tarski, his recursive definition effects the kind
of reduction suggested by the T-sentences (see for example [Tarski, 1933a, pp.
251–3]).

Suppose now that in the metalanguage we introduce semantic concepts (refer-
ring to the object language) by way of Tarski’s definition. Then:

“the definition of truth, or of any other semantic concept, will fulfil
what we intuitively expect from every definition; that is, it will explain
the meaning of the term being defined in terms whose meaning appears
to be completely clear and unequivocal. And, moreover, we have then
a kind of guarantee that the use of semantic concepts will not involve
us in any contradictions.” [Tarski, 1944, pp. 674–5]

Here is the point of Tarski’s definition. In the metalanguage, we may use the notion
of truth (for the object language) without fear of paradox, safe in the knowledge
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that ‘true’ can always be eliminated via its definiens in a precise, uncontroversial
way, in favour of terms which are not semantical and thereby immune to paradox.62

Tarski’s definition, then, legitimates the use of the concept of truth (for a given
object language, in a suitable metalanguage). And Tarski was optimistic that the
concept of truth thus defined would prove fruitful, both for philosophy and the
special sciences. Tarski points out that the problem of defining truth “has often
been emphasized as one of the fundamental problems of the theory of knowledge”
[Tarski, 1936a, p. 407]. He suggests that the notion of truth is essential to the
following constraint on empirical theories:

“As soon as we succeed in showing that an empirical theory contains (or
implies) false sentences, it cannot be any longer considered acceptable.”
[Tarski, 1944, p. 691]

And in regard to mathematics and metamathematics, Tarski suggests that we
can already see the valuable results contributed by the theory of truth and the
semantic method:

“These results concern the mutual relations between the notion of truth
and that of provability; establish new properties of the latter notion
(which, as well known, is one of the basic notions of metamathematics);
and throw some light on the fundamental problems of consistency and
completeness. . . .

Furthermore, by applying the method of semantics we can adequately
define several important metamathematical notions which have been
used so far only in an intuitive way - such as, e.g., the notion of de-
finability or that of a model of an axiom system; and thus we can
undertake a systematic study of these notions. In particular, the inves-
tigations on definability have already brought some interesting results,
and promise even more in the future.” (p. 693)

62These remarks are in broad agreement with Etchemendy’s discussion in section 1 of
Etchemendy [Etchemendy, 1988a]. They are opposed to Field’s claim in Field [1986] that Tarski
aimed for a physicalistic reduction of truth. Field rests his textual case on one brief passage from
[Tarski, 1936a]:

“. . . it would then be difficult to bring this method into harmony with the postulates
of the unity of science and of physicalism (since the concepts of semantics would
be neither logical nor physical concepts).” [Tarski, 1936a, p. 406]

The method in question is the axiomatic method of defining truth, according to which truth is
introduced as a primitive concept whose basic properties are established by axioms. Tarski’s
concern here is that a primitive semantic concept would be in tension with the scientific, phys-
icalist outlook. Tarski’s theory produces no such tension: truth is eliminable, not primitive.
Immediately after the passage just quoted, Tarski remarks that his preferred method reduces the
concept of truth to logical concepts, concepts of the object language, and structural-descriptive
concepts. There is no mention of physicalistic concepts or the need for a specifically physicalistic
reduction. Tarski thought it an advantage of his theory that it harmonized with the scientific
outlook — but there is no indication that Tarski sought an explicitly physicalist reduction of
truth.
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(ii) What kind of theory is Tarski’s theory of truth? Is it, for example, a correspon-
dence theory of truth? At several places, Tarski says that he wishes to capture
the intuitions behind the classical Aristotelian conception of truth - and Tarski
formulates that conception in terms of correspondence. Consider:

“If we wished to adapt ourselves to modern philosophical teminology,
we could perhaps express this conception by means of the following
formula:

The truth of a sentence consists in its agreement with (or correspon-
dence to) reality.” ([Tarski, 1944, p. 667]. See also [Tarski, 1933a, p.
153] and [Tarski, 1936a, p. 401].)

However, we would expect a full-blown correspondence theory to provide an
account of the correspondence relation and its relata — and Tarski’s theory does
not. Such notions as correspondence and state of affairs are not the subject of
Tarski’s theory — for Tarski, these are vague notions that gesture towards a cer-
tain conception of truth. It is noteworthy that Aristotle’s dictum (quoted above)
makes no mention of a correspondence relation, or facts, or states of affairs. And
Tarski finds Aristotle’s formulation preferable to those that talk vaguely of ’corre-
spondence’ and ‘reality’ (see [Tarski, 1944, p. 667]). Still, Aristotle’s formulation,
like the others, cannot serve as a definition of truth, and

“[i]t is up to us to look for a more precise expression of our intuitions.”
[Tarski, 1944, p. 667]

According to Tarski, those intuitions are adequately accommodated by the T-
sentences. Take the sentence ‘snow is white’. To what fact or state of affairs or
condition does this sentence correspond? To the fact, state of affairs or condition
that snow is white. That is, the sentence is true if snow is white, and false if snow
is not white — or to put it in familiar terms, ‘snow is white’ is true if and only if
snow is white. A definition of truth conforms to the correspondence conception if
it implies such T-sentences. (See [Tarski, 1944, p. 667]). So we can attribute to
Tarski a correspondence conception of truth — but we should not say that Tarski’s
theory is a correspondence theory in any robust sense.

If Tarski’s theory is not a correspondence theory, is it a kind of deflationary
theory?63 Deflationists, in particular disquotationalists, have drawn heavily from
Tarski’s account. According to the disquotationalist (for example Quine [70], chap-
ter 1), saying

‘snow is white’ is true

is just an indirect way of saying something about the world, namely, that snow
is white. All there is to say about the truth of ‘snow is white’ is encapsulated
by its associated T-sentence. According to the disquotationalist, truth is not a

63For a recent collection of classic and contemporary papers on deflationism see Blackburn and
Simmons 1999.
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substantive property; rather, the term ‘true’ is a “device for disquotation” (Quine
[Quine, 1970, p. 12]). A natural disquotational definition of ‘true’ for a language
L with finitely many sentences is this:

x is true iff (x = x1 and p1) or (x = x2 and p2) or . . . or x = xn and pn

where ‘x1’, ‘x2’, . . . ‘xn’ are replaced by quote-names of sentences of L, and ‘p1’,
‘p2’, . . . ‘pn’ by the sentences themselves. And this definition looks very like the
one Tarski suggests for languages with finitely many sentences (see above). So
there appear to be some close connections between Tarski’s theory and disquota-
tionalism.

Of course, Tarski and disquotationalists are concerned with languages that con-
tain infinitely many sentences. For that reason, as we saw, Tarski employs the
recursive method. The disquotationalist might follow suit: given a language with
a finite stock of names and predicates, reference may be disquotationally defined
by a finite list of sentences of the form ‘ “a” refers to a’, and satisfaction by a
finite list of sentences of the form ‘x satisfies “F” if and only if x is F ’. But such
a recursive disquotationalism is restricted to sentences that have the appropriate
kind of logical form. And there is an array of truths that are notoriously hard to
fit into the Tarskian mould: belief attributions, counterfactuals, modal assertions,
statements of probability, and so on. Since disquotationalism is an account of the
truth predicate of an entire natural language and not of some restricted portion,
the recursive route seems unattractive.

The disquotationalist might prefer to extend the above finitary definition to an
infinitary one:

x is true iff (x = x1 and p1) or (x = x2 and p2) or . . . .

where ‘p1’, ‘p2’ . . . abbreviate the sentences of the language.64 So now ‘true’ is not
just a device of disquotation; it is also a device for expressing infinite disjunctions.
Here the disquotationalist and Tarski part company; Tarski writes:

“Whenever a language contains infinitely many sentences, the defini-
tions constructed automatically according to the above scheme would
have to consist of infinitely many words, and such sentences cannot
be formulated either in the metalanguage or in any other language”
[Tarski, 1933a, p. 188–9]65

But Tarski’s infinitary qualms aside, might it be claimed that disquotationalism
captures the deflationary spirit of Tarski’s theory?

64Such a definition is suggested by remarks in Leeds [1978], and versions of it are presented
explicitly in Field [1986], Resnik [1990], David [1994].

For an illustration, consider the sentence: ‘What Claire said yesterday was true’. According to
the definition, the sentence is equivalent to What Claire said=‘aardvarks amble’ and aardvarks
amble or What Claire said = ‘antelopes graze’ and antelopes graze or . . . .

65Later Tarski investigated infinitary languages — see [Tarski, 1958a; Tarski, 1958b; Tarski,
1961b; Tarski, 1961c].
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Such a claim might be further encouraged by the observation that Tarski’s
definition is eliminative. According to the disquotationalist we have just char-
acterized, ‘true’ is always in principle eliminable by disquotation. The definiens
contains, apart from logical terms, only the quote-names of the sentences of the
given language, and their disquotations. And Tarski is quite clear that his defini-
tion of truth is eliminative (see [Tarski, 1944, p. 683]). Tarski points out that the
elimination may not be as straightforward as it is with “ ‘snow is white’ is true”
— consider the sentences “All consequences of true sentences are true” and “The
first sentence written by Plato is true”, where the elimination of ‘true’ is not a
matter of simple disquotation (see [Tarski, 1944, p. 83]). Nevertheless, elimination
is always possible in principle:

“Of course, since we have a definition for truth and since every defini-
tion enables us to replace the definition by its definiens, an elimination
of the term ‘true’ in its semantic sense is always theoretically possible.”
[Tarski, 1944, p. 83]

However, despite the close connections between Tarski and the disquotationalist,
and the shared eliminative nature of their definitions, I think Tarski would strongly
resist the label ‘deflationist’. First, unlike the disquotationalist, Tarski is not
offering a general theory of truth in natural languages. His theory is a limited to
certain regimented languages — including fragments of a natural language, but
never the whole language. Second, for Tarski truth is a substantive and fruitful
concept. According to the disquotationalist, there is no substantive concept of
truth — only the term ‘true’ that serves as a logical device. But, according to
Tarski, as we have seen, truth is a concept that has important work to do — in
philosophy and in metamathematics, for example. Third, Tarski thinks it is a
mistake to think that the concept of truth is sterile on the grounds that the word
‘true’ may be eliminated on the basis of its definition. That would lead, Tarski
says, to the absurd conclusion that all defined notions are sterile. Tarski writes:

“In fact, I am rather inclined to agree with those who maintain that the
moments of greatest creative achievement in science frequently coincide
with the introduction of new notions by means of definition.” (p. 683)

Tarski reserves the label ‘the semantic conception of truth’ for his account. And
the label is useful, at least for distinguishing Tarski’s theory from correspondence
and deflationary theories. Tarski’s theory does not fit comfortably into either of
those categories. Tarski himself emphasizes the neutrality of his theory:

“we may accept the semantic conception of truth without giving up
any epistemological attitude we may have had; we may remain naive
realists, critical realists or idealists, empiricists or metaphysicians —
whatever we were before. The semantic conception is completely neu-
tral toward all these issues” [Tarski, 1944, p. 686]
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Epistemological and metaphysical disputes about truth are not Tarski’s concern.
Rather, Tarski is after a definition of ‘true sentence’ that was precise, fruitful,
immune to paradox, and consonant with ordinary usage.

(iii) There are many other philosophical issues raised by Tarski’s work on truth.
Here we indicate just some of them.

(a) Is truth immanent or transcendent? It is striking that Tarski defines ’true’
only relative to a given language:

“We can only meaningfully say of an expression that it is true or not
if we treat this expression as a part of a concrete language. As soon as
the discussion concerns more than one language the expression ‘true
sentence’ ceases to be unambiguous.” [Tarski, 1933a, p. 263]

The question arises whether truth must always be ‘immanent’ in this way, or
whether there is a more general notion that transcends particular languages.66

(b) Are natural languages universal in the way that Tarski says they are? At issue
here is the expressive capacity of natural languages.67

(c) Are natural languages inconsistent? Tarski is often taken to give an affirmative
answer to this question, and he certainly comes close. He says that the semantical
antinomies

“seem to provide a proof that every language which is universal in
the above sense, and for which the normal laws of logic hold, must be
inconsistent.” [Tarski, 1933a, pp. 164–5]

But note the “seem to”. In [Tarski, 1944], Tarski is more explicitly cautious
— since a natural language has no exactly specified structure, “the problem of
consistency has no exact meaning with respect to this language” [Tarski, 1944,
p. 673]. Tarski also notes in [Tarski, 1933a, p. 267] that bringing exact methods
to bear on natural language would require a reform of the language, including its
division into a sequence of object languages and metalanguages.

“It may, however, be doubted whether the language of everyday life,
after being ‘rationalized’ in this way, would still preserve its naturalness
and whether it would not rather take on the characteristic features of
the formalized languages.” [Tarski, 1933a, p. 267]

There is, then, a delicate question as to how to read Tarski here. My preferred
reading is this: it is inappropriate to bring exact methods to bear on natural
language, and if one insists on doing so, the result will either be confusions and
contradictions or an artificial regimentation of natural language.68

(d) How is Tarski’s definition of truth related to the truth-conditions theory of
meaning? According to Davidson [Davidson, 1967], the relationship is very close:

66For discussions of this issue, see for example Resnik [1990] and Field [1994].
67For further discussion see, for example, Martin [1976], Herzberger [1981] and Simmons [1993].
68For further discussion see, for example, Soames [1999, pp. 49–56 and 150–51].
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“There is no need to suppress, of course, the obvious connection be-
tween a definition of truth of the kind Tarski has shown how to con-
struct, and the concept of meaning. It is this: the definition works
by giving necessary and sufficient conditions of the truth of every sen-
tence, and to give truth conditions is a way of giving the meaning of a
sentence. To know the semantic concept of truth for a language is to
know what it is for a sentence — any sentence — to be true, and this
amounts, in one good sense we can give to the phrase, to understanding
the language.” (p. 76)

Others would deny the connection that Davidson maintains here.69 It is clear
that Tarski would not regard his definition of truth as the basis for a theory of
meaning for natural languages. For one thing, Tarski restricts himself to formal
languages. And for another, truth, not meaning, is Tarski’s target. The meanings
of the sentences of the object language and metalanguage are taken as given from
the outset — indeed, it is a requirement of Tarski’s definition that the object
language be translatable into the metalanguage.

4.3 Logical consequence

We have just seen how Tarski took up the challenge of providing a precise def-
inition of truth that conforms to ordinary usage. In his paper ”On the concept
of logical consequence” [Tarski, 1936b], Tarski takes up the parallel challenge for
the concept of logical consequence. At the outset of the paper, Tarski rejects the
idea that logical consequence can be captured exhaustively via formal rules of in-
ference. The idea had great appeal among logicians: after all, all exact reasonings
in mathematics were formalizable using a small stock of simple rules of inference.
But Tarski showed that there is a clear and unbridgeable gap between the ordinary
notion of logical consequence and the logicians’ formalized notion.

As early as 1927, Tarski showed the existence of so-called ω-incomplete theories
(the terminology, but not the concept, is due to Gödel [Gödel, 1931]).70 Such a the-
ory includes the normal rules of inference (such as substitution and detachment),
and among its theorems are the following:

A0. 0 possesses the property P

A1. 1 possesses the property P

and in general every sentence of the form
69See for example Etchemendy [1988a, pp. 56–62], and Soames [1999, pp. 102–107]. Davidson’s

own position on this issue has evolved over the years– - for example, one may compare and
contrast Davidson [1967] and Davidson [1996].

70Tarski reports (in [Tarski, 1933b, p. 279, fn. 2] that in 1927 he had delivered a paper entitled
‘Remarks on some notions of the methodology of the deductive sciences’ to the Second Conference
of the Polish Philosophical Society in Warsaw in which he stressed the importance of the concepts
of ω-consistency and ω-completeness, and communicated an example of an ω-incomplete theory.
A slightly altered form of this theory appears in [Tarski, 1933b].
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An. n possesses the property P .

But the following sentence cannot be proved in the theory:

A. Every natural number possesses the property P .

Now it clear that, according to our ordinary notion, A is a logical consequence of
A0, A1, . . . An . . . . So:

“the formalized concept of consequence, as it is generally used by math-
ematical logicians, by no means coincides with the common concept.”
(p. 411)

Tarski goes on to point out that this gap cannot be closed by the introduction of
new (infinitary) rules of inference. For Gödel’s results show that

“[i]n every deductive theory (apart from theories of a particularly el-
ementary nature), however much we supplement the ordinary rules of
inference by new purely structural rules, it is possible to construct
sentences which follow, in the usual sense, from the theorems of this
theory, but which nevertheless cannot be proved in this theory on the
basis of the accepted rules of inference.” [Tarski, 1936b, p. 413]

Consequently,

“In order to obtain the proper concept of consequence, which is close
in essentials to the common concept, we must resort to quite different
methods and apply quite different conceptual apparatus in defining it.”
(ibid.)

The new methods are Tarski’s semantic methods. While Tarski makes “no very
high claim to complete originality” [Tarski, 1935, p. 414], it is clear that he regards
his account as the first fully precise semantic treatment of logical consequence.
Tarski’s positive account in [Tarski, 1936b] starts out with two guiding intuitions.
Suppose we have a class K of sentences and a sentence X which follows from K.
The intuitions are these:

(i) It can never happen that every member of K is true and X is false.

(ii) The subject matter of K and X (the objects to which reference is made)
have no effect on the consequence relation — only the form of the sentences
matters.

(i) and (ii) suggest the following condition on the consequence relation:

(F) Given K and X , if the nonlogical constants are replaced uniformly, yielding
K ′ and X ′, then X ′ must be true if all the sentences of K ′ are true.

Now Tarski points out that while (F) can serve as necessary condition, it is not
sufficient. The difficulty is this: we may not assume that the language contains
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designations for all possible objects.71 (Here, Tarski’s remarks are aimed at Car-
nap’s definition of logical consequence.)72 To avoid this difficulty, Tarski turns
to the notions of sentential function and satisfaction. Assume a correspondence
between variables and extralogical constants. Given a class L of sentences, replace
each occurrence of an extralogical constant by its corresponding variable. We will
obtain a class of sentential functions — call it L′. Given the concept of the satis-
faction of a sentential function by a sequence of objects, we can define the notion
of a model of L as follows:

An arbitrary sequence S of objects is a model of the class L of sentences
if and only if S satisfies every member of L′.

The notion of a model of a sentence is to be understood in the the obvious way.
And now Tarski states the definition of logical consequence:

“The sentence X follows logically from the sentences of the class K if
and only if every model of the class K is also a model of the sentence
X .” [Tarski, 1936b, p. 417]

This definition, says Tarski, agrees with common usage, and meets the condi-
tions (i) and (ii) — for it follows from the definition that every consequence of true
sentences is true, and that the consequence relation is independent of the meanings
of extra-logical constants. Notice that a definition of logical truth is immediately
forthcoming: a sentence Y is logically true if every interpretation of Y is a model
of Y .

There has been far less philosophical discussion of Tarski’s notion of logical
consequence than of his notion of truth. (Perhaps, as Gómez-Torrente suggests
in [Gómez-Torrente, 1996, p. 126], this is a sign of its success — it is generally
regarded as a standard fixture of modern logic.) But there has been some dis-
cussion, most notably the critical work of Etchemendy in [1983; 1988a; 1988b;
1990]. Etchemendy challenges the model-theoretic treatment of logical conse-
quence, a treatment that is now quite standard.73 Etchemendy also challenges
the widespread attribution of this standard treatment to Tarski (see [Etchemendy,
1988a]). He argues that Tarski’s definition of logical consequence diverges from
the standard one.

71Tarski points out that it may, and does, happen that X does not follow in the ordinary sense
from the sentences of K, and yet the condition F is satisfied — where F is satisfied because
the language with which we are dealing does not have a sufficient stock of extra-logical symbols.
Tarski writes that the condition is sufficient

“only if the designations of all possible objects occurred in the language in question.
This assumption, however, is fictitious and can never be realized” [Tarski, 1936b,
p. 416]

72In Carnap [1934, pp. 137ff], Carnap provided definitions of logical consequence and fur-
ther derivative concepts. Tarski regarded them as inadequate because the defined concepts are
dependent on the richness of the language under investigation.

73For a defence of the model-theoretic account against Etchemendy’s attack, see Soames [1999,
pp. 117–136].
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According to Etchemendy, there are two main points of divergence. The first
concerns the ω-rule of inference, the inference that allows us to move from A1, A2,
. . . An, . . . toA. Given a first-order formalization of arithmetic (where the numerals
are nonlogical constants) the ω-rule is invalid according to the standard model-
theoretic account — for there are interpretations of ‘natural number’ and ‘0’, ‘1’,
‘2’, . . . for which A1, A2, . . . An, . . . are all true and A is false. But Tarski claims
that the inference is intuitively valid, and that his definition respects this intuition.
If so, then it follows that Tarski’s definition and the standard model theoretic
definitions are different. And Etchemendy goes on to argue that the price Tarski
pays for the validation of the ω-rule is a trivialization of his analysis.74

The second main point of divergence concerns domain variation: according to
Etchemendy, Tarski’s account of logical consequence, unlike the standard account,
does not require that we vary the domain of quantification. But now Tarski’s ac-
count gets into trouble, Etchemendy argues. Suppose the intended interpretation
of a given language has a domain with two or more individuals. Now consider the
sentence ∃x∃y(x �= y). If we do not require domain variation, this sentence will be
a logical truth.

If Etchemendy is right, Tarski’s definition — to its detriment — diverges from
the standard model-theoretic account in two important respects. But it is possible
to resist Etchemendy’s reading of Tarski. According to Gómez-Torrente [Gómez-
Torrente, 1996], the supposed divergences are illusory. First, Tarski did not think
that first-order versions of the ω-rule are valid — only certain versions in broader
logical frameworks are valid. (Of course, an argument may be valid under some
but not all of its formalizations). Gómez-Torrente argues that in [Tarski, 1936b]
Tarski has in mind a presentation of arithmetic in a broad logical framework
such as the simple theory of types or the calculus of classes. (We saw above
in fn. 71 that Tarski discusses ω-incompleteness in [Tarski, 1933b], where the
logical framework is the general theory of classes.) In such a broad framework,
arithmetical expressions (like the numerals) are defined expressions, not primitives
or nonlogical constants. Now consider the ω-rule of inference again. If there are
any nonlogical constants, they will appear in P only — nowhere else are there
any constants subject to reinterpretation. And since the class of logically defined
natural numbers will coincide with the extension of the predicate ‘natural number’,
A will follow from A1, A2, . . . An, . . . (to borrow Etchemendy’s words, quoted in
fn. 74, any set that contains each natural number contains every natural number).

Second, although it is true that [Tarski, 1936b] makes no mention of domain
variation, Gómez-Torrente provides several reasons for thinking that it is implicit

74According to Etchemendy, Tarski allows a nonstandard choice of logical constants, which may
include the numerals and the quantifier ‘every natural number’. Then A will be a consequence
of A1, A2, . . . An, . . . , since “any set that contains each natural number contains every natural
number” [Etchemendy, 1988a, p. 73]. Etchemendy argues that this flexibility with regard to the
choice of logical constants leads to a certain trivialization of Tarski’s analysis. However, below we
will consider another reading of Tarski, according to which Tarski’s definition does not diverge
from the standard model-theoretic one, Tarski does not endorse nonstandard choices of logical
constants, and no such trivialization results.
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in Tarski’ definition. Perhaps the most compelling reason is the following. Tarski
often specifies a domain (or universe of discourse) by way of a nonlogical predi-
cate. For example, recall the ‘textbook’ introduction of a model in [Tarski, 1941a,
Chapter VI] — detailed in 2.5 above. We start with a simple deductive theory,
the theory of congruence. The nonlogical predicate ‘S’ denotes the set of all line
segments — the domain or universe of discourse. Now the two axioms are rela-
tivized to S; for example, Axiom 1 says that for all x ∈ S, x ∼= x. Now we abstract
away from our particular theory. In particular, we replace ‘S’ by ‘K’, so that now
the axioms are fully abstract, and relativized to ‘K’. Now ‘K’ may be interpreted
as the set of all line segments — but it may also be interpreted as the universal
class, or the set of all numbers, or any set of numbers, and so on. In each case,
the interpretation of ‘K’ will be the domain of the model. Here, and elsewhere
in Tarski’s work,75 domain variation is accommodated by the reinterpretation of
nonlogical predicates. But Tarski’s test for logical consequence just is a matter
of interpretation and reinterpretation — and so Tarski’s definition as it stands
accommodates domain variation.76

We have good reason, then, to maintain the received view: Tarsi provided us
with the first precise model-theoretic treatment of logical consequence — and
Tarski’s treatment remains standard to this day.

4.4 Model theory: some historical remarks

Tarski’s seminal work on definability, truth and logical consequence were of cen-
tral importance to the development of model theory — the study of the relation
between formal languages and their interpretations. Chang and Keisler point out
that model theory is a young subject, “not clearly visible as a separate area of
research until the early 1950s” [Chang and Keisler, 1973, p3]. Lowenheim [1915]
is generally regarded as the first specific contribution to model theory. In this pa-
per, Lowenheim introduces the method of elimination of quantifiers (more on this

75There are many other places where Tarski specifies a domain via a nonlogical predicate. For
another example, consider Tarski’s presentation of abstract Boolean algebra in [Tarski, 1935;
?] — detailed in 2.4 above. As we saw, the meaning of the predicate ‘B’ is given by ‘the universe
of discourse’. In the course of [Tarski, 1935; ?], ‘B’ is variously interpreted as the universe of sets
(Boolean set algebra), the set S of all sentences (the calculus of sentences), and the class D of
deductive systems (the calculus of systems). Again, domain variation is accommodated by the
reinterpretation of a nonlogical predicate.

As further examples, Gomez-Torrente also cites all the first order theories, and the second-order
theory of real arithmetic, presented in [Tarski, 1936c].

76Gomez-Torrente mentions two other reasons for thinking that domain-variation is implicit in
Tarski’s definition. First, as both Etchemendy and Gomez-Torrente point out, Tarski had already
defined the notion of ‘true sentence in an individual domain a’ in [Tarski, 1933a], showing an
explicit concern with domain variation prior to [Tarski, 1936b]. Why unnecessarily attribute to
Tarski an abrupt change of mind? Second, [Tarski, 1936b] is a summary of an address given to
a philosophical audience (it was delivered at the International Congress of Scientific Philosophy,
in Paris, 1935). The paper is indeed informally written and brief — so it would not be surprising
if Tarski suppressed certain more technical matters. (Gomez-Torrente [1996] is a careful and
convincing paper which contains more argumentation and historical information that I am able
to cover here.)
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below). Lowenheim also proves the theorem that bears his name: If a first-order
sentence A is true in every finite domain but not every domain, then there is a
denumerable domain in which A is not true. Lowenheim’s result was improved
by Skolem in [?], yielding the Lowenheim-Skolem theorem: Any set of first-orderThis citation is for Skolem

1920. sentences which has a model has a denumerable model. In [Skolem, 1922], Skolem
went on to improve the result further: Any model of a set of first-order sentences
has a denumerable submodel.77

Tarski’s earliest contributions to model theory were presented in the university
lectures and seminars that he gave at Warsaw University in the years 1926–1928
(see [Tarski, 1948a, p. 50, fn. 11]). It is reported that in 1927-8 Tarski produced
further improvements to the Lowenheim-Skolem theorem as follows:

(i) Any denumerable set of first-order sentences that has an infinite model has
an uncountable model.78Please check reference in

footnote
(ii) Any denumerable set of first-order sentences that has an infinite model has a

model in each infinite power.79

Vaught reports that Tarski never published a proof of (i) or (ii); Tarski’s proofs
remains a mystery.80 Tarski also explored the method of eliminating quantifiers, a
powerful method for establishing metamathematical properties of theories, espe-
cially decidability. We will take a closer look at the method in Section 5 below. A
number of key notions of model theory were introduced in the seminar — among
them, Vaught reports, the notion of elementary equivalence.81

Gödel’s landmark completeness theorem was published in 1930. During the
1930s, Tarski produced his greatest contributions to model theory — the work
on definability, truth and logical consequence. As we have seen, Tarski stresses
semantical methods in Chapter VI of his 1941 textbook [Tarski, 1941a], and the
notion of model takes center-stage.

It was not until the postwar period that model theory became an autonomous
area of study. In 1954–5, Tarski published a series of three articles under the title
“Contributions to the theory of models” [?; ?; ?]. In the first of these, Tarski
writes:

77Given a model M with domain D, a submodel M ′ of M has for its domain a subset of D.
M ′ assigns to the expressions of the given first-order language restrictions of the extensions that
M assigns — restrictions tailored to M ′′s smaller domain.

78According to the editors of Fundamenta Mathematicae, Tarski proved this result in 1927–8.
See the editors’ Note after the paper Skolem [?].

79In [Tarski, 1957b], Tarski and Vaught write:

“A proof, along these lines, of Theorem 2.2 is known, but is by no means simple. It
is essentially the same proof which was originally found by Tarski, in 1928, for the
generalized Lowenheim-Skolem theorem.” [Tarski, 1957b, p. 666, fn. 8]

80Vaught refers the reader to his speculations in Vaught [Vaught, 1965, p. 398], and [Vaught,
1974, p. 160]. The first published proof of (ii) appeared in Mal’cev [36] (which also contains a
generalization of Godel’s completeness and compactness theorems to uncountable languages).

81Vaught [1986, p. 870]. Two models are elementarily equivalent iff every sentence that is true
in one is true in the other, and vice versa.
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“Within the last few years a new branch of metamathematics has been
developing. It is called the theory of models and can be regarded as a
part of the semantics of formalized theories.” [?, p. 517]

These references are to
Tarski, 1954a, 1954b and
1955, none of which appear
in the bibliography.

This appears to be the first time that the phrase ‘theory of models’ appears
in the literature.82 The subject developed quickly in the 1950s, stimulated by
work of Tarski, Malcev, Henkin and Abraham Robinson, among others. Tarski
continued to make important contributions: for example, he introduced the notions
of elementary substructures and elementary chains, and proved some fundamental
results involving these notions, including “Tarski’s union theorem” (see [Tarski,
1957b], with Vaught); with Frayne, Morel and Scott, he showed the importance of
the role of ultraproducts in model theory (see Frayne et al. [?]); and with Hanf, No reference for Frayne et al.

in bibliographyhe initiated work on measurable cardinals (Tarski [Tarski, 1962] and Hanf [Hanf,
1963–4] — and see Section 7 below).83 Tarski also influenced model theory a great
deal through his students and through his collaborations with other logicians.84

5 DECIDABILITY AND UNDECIDABILITY

Tarski casts the decision problem sometimes in terms of proof, and sometimes in
terms of truth. In [Tarski, 1953], for example, the notion of proof is central:

“By a decision procedure for a given formalized theory T we understand
a method which permits us to decide in each particular case whether
a given sentence formulated in the symbolism of T can be proved by
means of the devices available in T (or, more generally, can be rec-
ognized as valid in T ). The decision problem for T is the problem of
determining whether a decision procedure for T exists (and possibly
of exhibiting such a procedure). A theory is called decidable or unde-
cidable according as the solution of the decision problem is positive or
negative.” [Tarski, 1953, p. 3]

In [Tarski, 1948a], the notion of truth takes centre-stage:
82This claim is made by Chang and Keisler [1973, p. 3], and by Vaught [1986, p. 876].
83For a more detailed survey of Tarski’s postwar contributions to model theory, see Vaught

[1986] and Chang and Keisler [1973, pp. 515–531]. Addison, Henkin and Tarski [1965b] contains
a large bibliography of work on model theory up to that time.

84Consider the roster of logicians that Vaught provides:

“Tarski influenced model theory not only with his papers but also through his PhD
students, his correspondence, and his conversations with people, many of whom
came to Berkeley to see him. This was especially so in the two decades after the
war, His PhD students active in model theory included Mostowski, Julia Robinson,
Wanda Szmielew, [Robert Vaught], C. C. Chang, S. Feferman, Montague, H. J.
Keisler, H. Gaifman, W. Hanf, and others. Some people (not PhD students) active
in model theory, who were close to Tarski and received inspiration from him in
their work, were Beth, Fraisse, Henkin, Los, Lyndon, and D. Scott. One could add
J. Ax, W. Craig, A. Ehrenfeucht, Y. Ershov, S. Kochen, M. Rabin, A. Robinson,
and many, many others.” [Vaught, 1986, p. 877]
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“The most important kind of decision problems is that in which K
[a class of sentences] is defined to be the class of true sentences of a
certain theory. When we say that there is a decision method for a
certain theory, we mean that there is a decision method for the class
of true sentences of the theory” [Tarski, 1948a, p. 1]

Tarski was in no doubt about the significance of the decision problem:

“As is well known, the decision problem is one of the central problems
of contemporary metamathematics”. [Tarski, 1953, p. 3]

In the present section, we turn to Tarski’s work on decidability (subsections 1 and
2) and undecidability (subsection 3).

5.1 Decidability of the theory of the reals

Tarski famously proved the decidability of the first-order theory of the real num-
bers. The proof was first published in full detail in A Decision Method for Ele-
mentary Algebra and Geometry [Tarski, 1948a]:

“In this monograph we present a method . . . for deciding on the truth
of sentences of the elementary algebra of real numbers.” (p. 2)

By ‘the elementary algebra of real numbers” is to be understood

“that part of the general theory of the real numbers in which one uses
exclusively variables representing real numbers, constants denoting el-
ementary operations on and relations between real numbers, like ‘+’,
‘.’, ’-’, ‘<’, ‘>’, and ‘=’, and expressions of elementary logic such as
’and’, ‘or’, ‘not’, ‘for some x’, and ‘for all x’.” (p. 2)

The primitive operations are ‘+’ and ‘.’, and so we shall refer to this theory as
〈R,+, .〉.

Here decidability is understood in the semantic sense — the intuitive notion of
truth plays a fundamental role in Tarski’s presentation. (Tarski refers the reader to
the formal definition in [Tarski, 1933a].) But Tarski points out that truth could be
eliminated from the entire discussion by proceeding axiomatically, and replacing
the notion of truth by the notion of provability (see footnote 9, pp. 48–50, where
Tarski provides a list of axioms). Under this new interpretation, Tarski’s results
lead easily to the conclusion that the axiomatic system of elementary algebra is
decidable, consistent, and complete (see fn. 15, p. 53). Moreover, since the axioms
are satisfied not only by the reals but also by the elements of any real-closed field,
it follows that the theory of real-closed fields is also decidable, consistent, and
complete (see fn. 15, p. 54).85 Of these various related results, the decision
method for real-closed fields is particularly celebrated.

85For a full characterization of the theory of real-closed fields see, for example, Chang and
Keisler [Chang and Keisler, 1973, p. 41].
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Tarski established the decidability of the first-order theory of the reals by “the
method of eliminating quantifiers” [Tarski, 1948a, p. 15]. Following Tarski [Tarski,
1948a, p. 50, fn. 11], we can trace the history of this method through Lowen-
heim [1915, Section 3], Skolem [1919, Section 4], Langford [?], and Presburger [?]. No entry in bib for Langford

1910Tarski mentions that in his university lectures for the years 1926–8 the method
was developed in a general and systematic way (see [Tarski, 1948a, p. 50, fn. 11].

In outline, the method is as follows. Given a theory T , we identify certain
basic formulas, and prove that every formula of T is T-equivalent to a Boolean
combination of basic formulas. A Boolean combination of basic formulas is a
formula obtained from basic formulas by repeated applications of ¬ and &; and
two formulas φ and ψ are T-equivalent iff T |φ ↔ ψ (i.e. φ ↔ ψ is a semantic
consequence of T ). The proof — and in particular the step where we ‘eliminate
quantifiers’ — yields a decision procedure for the theory T .

For illustration, consider the theory D of dense simple order without endpoints.
We take D to be given by the set of its axioms,86 and we take the true sentences of
D to be its axioms and their semantic consequences. We will apply the method of
quantifier elimination to show that D is decidable (a result published by Langford
in 1927).87 We take as basic formulas the following: ‘vm = vn’ and ‘vm ≤ vn’.
(Notice that the Boolean combinations of basic formulas are exactly the open
formulas.) Let ‘vm < vn’ abbreviate ‘vm < vn&vm �= vn’. We consider n +
1 variables v0, v1, . . . , vn for n > 0. We associate with these variables certain
conjunctions θ0&θ1& . . . θn−1 called arrangements. Each conjunct θi is either ui <
ui+1 or ui = ui+1, where u0, u1, . . . , un is a renumbering of v0, v1, . . . , vn.

The main result to be proved is the following:

Quantifier Elimination Theorem for D Every formula is D-equivalent to an open
formula.

86The theory of dense simple order without endpoints has the following axioms:

1. ∀x∀y∀z(x = y&y = z → x = z) (transitivity)

2. ∀x∀y(x = y&y = x → x = y) (antisymmetry)

3. ∀x(x = x) (reflexivity)

4. ∀x∀y(x = y ∨ y = x) (comparability)

5. ∀x∀y(x = y&x 
= y) → ∃z(x = z&z 
= x&z = y&z 
= y)

6. ∃x∃y(x 
= y)

7. ∀x∃y(x = y&x 
= y)

8. ∀x∃y(y = x&x 
= y).

(Axioms 1,2,3 give the theory of partial orders; if we add Axiom 4, we obtain the theory of
simple order (or linear order); if we further add Axioms 5 and 6, we obtain the theory of dense
simple order ; and with the final addition of Axioms 7 and 8, we arrive at the theory of dense
simple order without endpoints.)

87In his papers [1927; 1928], Langford proved that the following theories are decidable by the
method of quantifier elimination: dense linear orders without endpoints, dense linear orders with
a first element but no last, dense linear orders with first and last elements, and the system of
the natural numbers ordered by ‘<’.
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We can easily show that to prove this theorem it is sufficient to prove:

(1) If ψ(v0, . . . vn) is an open formula, then ∃vmψ is D-equivalent to an open
formula.88

As we are about to see, the proof of (1) involves the elimination of quantifiers,
and yields a decision procedure for the theory D.89 First, some preliminaries.
Note that if m > n, then the quantifier is vacuous, and (1) is immediate. So we
may assume m ≤ n. It is convenient to further assume a suitable renaming of the
variables so that m = n. We will also assume the following lemma:

LEMMA 8. Every open formula ψ(v0, . . . , vn) is D-equivalent to v0 < v0, or v0 =
v0, or the disjunction of finitely many arrangements of the variables v0, . . . , vn.90

So for the purposes of proving (1), we can assume that ψ is

(i) v0 < v0, or

(ii) v0 = v0, or

(iii) the disjunction of finitely many arrangements of the variables v0, . . . , vn.

(1) is immediate for the cases (i) and (ii), since in each case ∃vnψ (either ∃v0(v0 <
v0) or ∃v0(v0 = v0)) is D-equivalent to the open formula ψ (either v0 < v0 or
v0 = v0 respectively).

88Here is a sketch of a proof of this result, that to prove the theorem it is sufficient to prove (1).
First we establish a general result for any theory T (this is Lemma 1.5.1 in [Chang and Keisler,

1973, p. 50]]:

To show that every formula is T -equivalent to a Boolean combination of basic for-
mulas, it is sufficient to show:

(i) every atomic formula is T -equivalent to a Boolean combination of basic formulas,
and

(ii) if ψ is a Boolean combination of basic formulas then ∃vmψ is equivalent to a
Boolean combination of basic formulas.

This general result is proved by induction on the complexity of formulas. If φ is an atomic
formula, then φ is T -equivalent to a Boolean combination of basic formulas by (i). The cases
for negation and conjunction are obvious. If φ is ∃vmψ, where ψ is a Boolean combination θ of
basic formulas, then ∃vmψ is T -equivalent to ∃vmθ, and so, by (ii), T -equivalent to a Boolean
combination of basic formulas. (For more details, see Chang and Keisler, ibid.).

Now apply this general result to theory D. Here, (i) is immediate: the atomic formulas are
vm = vn and vm = vn, and these are the basic formulas (and so vacuously equivalent to a
Boolean combination of basic formulas). So it remains only to prove (ii). Since the open (or
quantifier-free) formulas are exactly the Boolean combinations of basic formulas, (ii) is equivalent
to:

If ψ is an open formula, then ∃vmψ is D-equivalent to an open formula.
But this is just (1) — and so it remains only to prove (1). So to prove the quantifier elimination

theorem it is sufficient to prove (1) — which is what we wanted to show.
89For the proof that follows, I follow Chang and Keisler [Chang and Keisler, 1973, pp. 52–4]].

Full details can be found there.
90This is Lemma 1.5.2, [Chang and Keisler, 1973, p. 51]. For the proof, see pp. 51–2.
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So we turn to case (iii), and let

ψ = θ0 . . . vθp

where each θi is an arrangement of v0, . . . , vn. It follows that

D � ∃vnψ ↔ ∃vn(θ0v . . . vθp),

and so
D � ∃vnψ ↔ ∃vnθ0v . . . v∃vnθp.

We now show that ∃vnψ is D-equivalent to an open formula. First, suppose that
n = 1. Then there are only three possibilities for each disjunct ∃vnθi : ∃v1(v0 < v1)
or ∃v1(v0 = v1) or ∃v1(v1 < v0). Each of these is a consequence of D, and so the
entire disjunction is a consequence of D. That is:

D � ∃vnθ0v . . . v vnθp.

It follows that
D � ∃vnψ.

So ∃vnψ is D-equivalent to v0 = v0, an open formula.
Second, suppose that n > 1. We now describe a procedure for finding an open

formula D-equivalent to ∃vnψ. (We will later see that this procedure is the core of
the decision procedure for D.) Consider each arrangement θi of v0, . . . , vn. There
is an associated arrangement θi* of v0, . . . , vn−1 formed from θi by leaving out
vn.91 It is straightforward to check that

D � ∃vnθi ↔ θi ∗ .92

So it follows that
D � ∃vnψ ↔ θ0 ∗ v . . . vθp ∗ .

91For example, suppose n = 2 and the arrangement θi of v0, v1 and v2 is:

v0 < v1&v1 = v2.

Then the associated arrangement θi∗ of v0 and v1 is:

v0 < v1.

92For an illustration, consider θi and θi∗ from the previous footnote. Here the biconditional
∃vnθi ↔ θ∗i is

∃v2(v0 < v1&v1 = v2) ↔ v0 < v1.

which is logically equivalent to

v0 < v1&∃v2(v1 = v2) ↔ v0 < v1.

This is clearly a semantic consequence of D as required (since Q∃v2(v1 = v2) is an obvious
semantic consequence of D).
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So ∃vnψ is D-equivalent to an open formula. This completes the proof of (1), and
so we have proved the quantifier elimination theorem for D.

We are also in a position to describe a decision procedure for D. Given an
arbitrary sentence φ, we wish to determine whether φ is a true sentence of D.
We proceed as follows. We put φ into prenex normal form Q0v0. . . Qnvnψ, where
each Qi is a quantifier expression, and ψ is an open formula. We can assume
without loss of generality that Qn is an existential quantifier, since otherwise we
may start with ¬φ. We now eliminate the existential quantifier Qn. Since ψ is
an open formula, by the above lemma it is D-equivalent to v0 <v0 or v0=v0 or a
disjunction θ0v. . . v θp of finitely many arrangements of v0,. . . ,vn. In the first case,
we replace Qnvnψ by v0 <v0; in the second case we replace Qnvnψ by v0=v0. In
the third case, we replace Qnvnψ by v0=v0 if n=1, and if n>1, we replace Qnvnψ
by a D-equivalent open formula θ0* v . . . v θp* by the procedure just described in
the previous paragraph. We repeat this procedure for Qn−1, Qn−2, . . . Q1, until
a sentence of the form Q0χ(v0) remains. And then it is obvious whether or not
Q0χ(v0) is a true sentence of D. (It is easy to see that Q0χ(v0) must take one of
four forms: ∃v0(v0 = v0), ∀v0(v0 = v0), ∃v0(v0 < v0) or ∀v0(v0 < v0), the first two
of which are clearly true sentences of D, while the second two clearly are not.)
From this we can decide whether or not φ is a true sentence of D.

For a simple example, consider the sentence

(i) ∃v0∀v1v2(v0 < v1&v1 < v2).

Notice that this sentence is already in prenex normal form, and that the formula
‘v0 < v1&v1 < v2’ is already an arrangement of the variables v0, v1, v2. Following
our procedure, we replace the formula ‘∃v2(v0 < v1&v1 < v2)’ by ‘v0 < v1’, and
obtain the sentence:

(ii) ∃v0∀v1(v0 < v1).

Since the innermost quantifier expression of (ii) is a universal quantifier, we work
instead with its negation, which is logically equivalent to

(iii) ∀v0∃v1¬(v0 < v1).

Since here n = 1, our procedure tells us to replace ‘∃v1¬(v0 < v1)’ by ‘v0 = v0’ to
obtain the sentence

(iv) ∀v0(v0 = v0).93

93Notice how this step connects to the case of n = 1 in the proof above. The formula ‘¬(v0 <
v1)’ is D-equivalent to the following disjunction of arrangements of v0, v1:

v0 = v1 ∨ v1 < v0.

Now ∃v1(v0 = v1 ∨ v1 < v0) is logically equivalent to

∃v1(v0 = v1) ∨ ∃v1(v1 < v0).

It is clear that each disjunct is a logical consequence of D. And so we may replace ‘∃v1¬(v0 < v1)’
by ‘v0 = v0’.
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We readily see that (iv) and hence (iii) are true sentences of D. And since (iii) is
logically equivalent to the negation of (ii), we conclude that (ii) and hence (i) are
not true sentences of D.

This completes our illustration of a decision procedure generated by the proof
of a quantifier elimination theorem. Tarski’s decision procedure for the first-order
theory 〈R,+, .〉 follows the same general pattern. The central result of [Tarski,
1948a] is a quantifier elimination theorem for 〈R,+, .〉 (Theorem 31, p. 39).94 The
decision method is a straightforward consequence of the theorem, and follows soon
after (Theorem 37, p. 42).

The proofs and results of [Tarski, 1948a] have a long history. Tarski reports
that he had obtained partial results tending in the same direction — such as the
decidability of elementary algebra with addition as the only operation, and of the
geometry of the straight line — in his university lectures of 1926–8 (see footnote
4 of [Tarski, 1948a], where Tarski refers the reader to to Presburger [?, p. 95, fn.
4], and Tarski [1921, p. 324, fn. 3].) Tarski remarks that the decision procedure
for the first-order theory of the reals was found in 1930 (see the Preface of [Tarski,
1948a] and also p. 2, especially footnote 4). Tarski’s paper [Tarski, 1931a] on the
definability of the reals (which we have discussed in Section 3 above) implicitly
mentions a quantifier elimination result for 〈R, 1,≤,+〉, where the basic formulas
are ‘x = 1’, ‘x ≤ y)’, ‘x+y = z’. Recall Theorem 1 from [Tarski, 1931a] (mentioned
in Section 3 above):

THEOREM 9. A set S of sequences of real numbers is a member of Df if and only
if S is a finite sum of finite products of elementary linear sets.

Theorem 9 is a theorem of mathematics, but as we noted in Section 3.2 there is
a correlation between (mathematical) sets of sequences and (metamathematical)
sentential functions, and between their respective Boolean operations — and so
there is a metamathematical analogue of Theorem 9. Tarski writes:

We can easily formulate (and prove) a metamathematical theorem
which is an exact analogue of Th. 1. This metamathematical result
leads us to a conclusion that, in the system of arithmetic described
in Sec 1 [viz. 〈R, 1,≤,+〉], every sentence of order 1 can be proved
or disproved. Moreover, by analysing the proof of this result, we see
that there is a mechanical method which enables us to decide in each
particular case whether a given sentence (of order 1) is provable or
disprovable. [Tarski, 1931a, p. 134]

The metamathematical result that Tarski mentions here is a quantifier elim-
ination theorem for 〈R, 1,≤,+〉 expressed in terms of definability. Tarski also
mentions that the decidability of 〈R, 1,≤,+〉 (as well as its completeness) follows
from the proof of the theorem.

94Tarski remarks that, from a purely mathematical point of view, the results leading up to
Theorem 31, and Theorem 31 itself, are closely related to Sturm’s theorem. Indeed, Tarski
writes that “Theorem 31 constitutes an extension of Sturm’s theorem. . . to arbitrary systems of
equations and inequalities with arbitrarily many unknowns.” (p.52, fn 12).
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Immediately after the passage just quoted, Tarski points out that the theory of
the real numbers can be based on different systems of primitive concepts — for
example, it can be based on the concepts of sum and product. Then a modified
form of Theorem 9 holds for 〈R,+, .〉. Here we can see an implicit mention of the
quantifier elimination theorem for 〈R,+, .〉, since the modified version of Theorem
9 will have its metamathematical analogue too. Tarski first explicitly mentions
the quantifier elimination theorem for 〈R,+, .〉 in The completeness of elementary
algebra and geometry [Tarski, 1967], a monograph that was scheduled for publi-
cation in 1940.95 Tarski also provides an outline of the proof. In this work the
emphasis is on the completeness of 〈R,+, .〉 (see Theorem 2.1, in Sec 2). Referring
to [Tarski, 1967] and [Tarski, 1948a], Tarski writes:

“A comparison of the titles of the two monographs reveals that the
center of scientific interest has been shifted to the decision problem
from that of completeness”. (Foreword to [Tarski, 1967])

Indeed, from [Tarski, 1931a] to [Tarski, 1967] and on to [Tarski, 1948a] we see
a shift in emphasis from definability to completeness to decidability. In [Tarski,
1948a], mention of definability and completeness is relegated to footnotes. In foot-
note 13 of [Tarski, 1948a] Tarski remarks that the quantifier elimination theorem
“gives us a simple characterization of those sets of real numbers, and relations
between real numbers, which are arithmetically definable”, and refers the reader
back to [Tarski, 1931a]. Completeness is mentioned in footnote 15. The emphasis
on decidability is at least in part explained by the fact that the RAND corporation
supported the publication of [Tarski, 1948a]. Tarski writes:

“Within a few months the monograph was published. As was to be ex-
pected, it reflected the specific interests which the RAND Corporation
found in the results. The decision method for elementary algebra and
geometry — which is one of the main results of the work - was pre-
sented in a systematic and detailed way, thus bringing to the fore the
possibility of constructing an actual decision machine. Other, more
theoretical aspects of the problems discussed were treated less thor-
oughly, and only in notes.” (Preface to [Tarski, 1948a])

5.2 The decidability of elementary geometry

As Tarski mentions here, and as its title suggests, the monograph [Tarski, 1948a]
contains a proof not only of the decidability of the first-order theory of the reals

95The monograph was to appear in 1940 in Actualites Scientifiques et Industrielles, Hermann
& Cie, Paris. In the Foreword to [Tarski, 1967], Tarski reports that the process of publication
reached the stage of page proofs, but then, during the war, the whole setting was destroyed. All
that remained were two sets of page proofs in Tarski’s possession. Several years later, J. C. C.
McKinsey re-wrote the monograph, and this version was published as [Tarski, 1948a]. In 1967,
the original page proofs were reprinted, largely due to the efforts of Rene de Possel, Director of
the Institut Blaise Pascal in Paris. Sczcerba remarks (in [?, p. 908]) that Tarski first saw the
reprint of the original proofs in 1967 on his 65th birthday.
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but also of the decidability of elementary (that is, first-order) geometry. Tarski
outlines a decision method for the specific case of 2-dimensional Euclidean geome-
try, but points out that the method can be adapted to Euclidean geometry of any
number of dimensions, as well as to various systems of non-Euclidean and projec-
tive geometry.96 Tarski observes in footnote 18 (pp. 55–57) that, just as in the
case of elementary algebra, one may proceed axiomatically, in terms of provability
rather than truth. Tarski presents a list of axioms for 2-dimensional Euclidean
geometry, which is easily modified to form a basis for elementary geometry of any
number of dimensions. One of the fruits of the decision method in this axiomatic
setting is a “constructive consistency proof for the whole of elementary geometry”
(fn. 18, p. 57)97

The decision method for 2-dimensional Euclidean geometry is readily obtained
from the decision method for elementary algebra, since each sentence of elemen-
tary geometry can be suitably correlated with a sentence of elementary algebra.
Following Tarski (pp. 43–45), we will first describe the system of 2-dimensional
Euclidean geometry and then show how to set up the correlation.

The language of 2-dimensional Euclidean geometry contains infinitely many
variables ranging over points of the Euclidean plane, and three predicate constants:
the identity sign ‘=’, the 3-place predicate ‘B(x, y, z)’ to be read as ‘y is between
x and z’, and the 4-place predicate ‘D(x, y, z, w)’ to be read as ‘the distance
from x to y is equal to the distance from z to w’. The atomic formulas are
‘x = y’, ‘B(x, y, z)’, and ‘D(x, y, z, w)’; complex formulas are built from the atomic
formulas via the usual sentential connectives and the quantifiers. It is noteworthy
that in Tarski’s formalization only points are treated as individuals, and there
are no set-theoretical devices or second-order variables. This is in contrast to
Hilbert’s influential Grundlagen der Geometrie, where certain geometrical figures
are treated as individuals, and the others are treated as second- order point sets.98

96In footnote 19, Tarski mentions that ordinary projective geometry may be treated as a branch
of the theory of modular lattices, referring the reader to Birkhoff [Birkhoff, 1948]. Tarski goes
on to say that the decision method also applies to this branch of lattice theory.

97Tarski observes that this improves a result to be found in Hilbert-Bernays [Hilbert and
Bernays, 1939, vol 2, pp. 38ff].

98Tarski draws the contrast in [Tarski, 1959, fn. 3] and the associated text.

“Thus, in our formalization of elementary geometry, only points are treated as
individuals and are represented by (first-order) variables. Since elementary geom-
etry has no set-theoretical basis, its formalization does not provide for variables
of higher orders and no variables are available to represent or denote geometrical
figures (point sets), classes of geometrical figures, etc. It should be clear that,
nevertheless, we are able to express in our symbolism all the results which can be
found in textbooks of elementary geometry and which are formulated there in terms
referring to various special classes of geometrical figures, such as the straight lines,
the circles, the segments, the triangles, the quadrangles, and, more generally, the
polygons with a fixed number of vertices, as well as to certain relations between
geometrical figures in these classes, such as congruence and similarity. This is pri-
marily a consequence of the fact that, in each of the classes just mentioned, every
geometrical figure is determined by a fixed finite number of points.” [Tarski, 1959,
p. 20]
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We can translate a sentence φ of elementary geometry into a sentence φ∗ of
elementary algebra by fixing a coordinate system. We make the following replace-
ments:

(i) If x is a (geometric) variable in φ, we replace it by two (algebraic) variables x1

and x2. (Intuitively, x represents a point in the Euclidean plane, and x1 and
x2 represent its real coordinates.) Distinct geometric variables are replaced
by distinct algebraic variables.

(ii) The quantifier phrases ∃x and ∀x are replaced by ∃x1∃x2 and ∀x1∀x2 respec-
tively.99

(iii) ‘x = y’ is replaced by ‘x1 = y1&x2 = y2’.

(iv) ‘B(x, y, z)’ is replaced by

‘(y2 − x2).(z1 − y1) = (z2 − y2).(y1 − x1)&0 ≤ (x1 − y1).(y1 − z1)
&0 ≤ (x2 − y2).(y2 − z2)’.

(v) ‘D(x, y, z, w)’ is replaced by

’(x1 − y1)2 + (x2 − y2)2 = (z1 − w1)2 + (z2 − w2)2’.

For example, the true sentence

∀x∀y∀z∃wD(x, y, z, w

of elementary geometry is correlated with the true sentence

∀x1∀x1∀y1∀y2∀z1∀z2∃w1∃w2[(x1 − y1)2 + (x2 − y2)2 = (z1 − w1)2 + (z2 − w2)2]

of elementary algebra. Tarski makes the general observation:

It is now obvious to anyone familiar with the elements of analytic ge-
ometry that whenever φ is true then φ∗ is true, and conversely. [Tarski,
1948a, p. 45]

It follows that 2-dimensional elementary geometry is decidable:

And since we can always decide in a mechanical way about the truth
of φ∗, we can also do this for φ. (ibid)

Tarski proved a number of other decidability results that we have not yet men-
tioned, all by the method of quantifier elimination. They include decidability
results for the theory of dense linear orderings (proved in Tarski’s lectures of 1926–
8); for the theory of wellorderings (work started with Mostowski in the 1930s, and
culminating in [Tarski, 1978]); and for the theory of Boolean algebras (announced

99Alternatively, we can work just with ‘∃’, as Tarski does, and take ‘∀’ to abbreviate ‘¬∃¬’.
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in [Tarski, 1949f]).100 Although the method of quantifier elimination did not
originate with Tarski, it was in his hands an extremely powerful systematic tool,
producing a number of important results about a wide range of theories. None
were more significant than the decision method for real-closed fields, described by
Doner and Hodges as “an astonishingly fruitful mathematical result” [Doner and
Hodges, 1988, p. 23]; for a detailed account of the impact of this result of Tarski’s,
see van den Dries [van den Dries, 1988, esp. pp. 10–16].

5.3 Undecidability

In his paper “A general method in proofs of undecidability” [Tarski, 1953, pp. 3–
35]101, Tarski distinguishes two different methods for solving the decision problem.

1. The direct method The ‘direct’ method is based on ideas developed in Gödel
[Gödel, 1931]. As Tarski summarizes it:

“A theory T is called decidable if the set of all its valid sentences
is recursive, and otherwise undecidable.” [Tarski, 1953, p. 14]

This is the method used by Church to show the undecidability of Peano’s
arithmetic, and by Rosser to show that every consistent extension of Peano’s
arithmetic is also undecidable.

2. The indirect method This method

“consists in reducing the decision problem for a theory T1 to the
decision problem for some other theory T2 for which the problem
has previously been solved.” [Tarski, 1953, p. 4]

In the original form of the indirect method, there are two ways to proceed:

(i) Where T2 is undecidable, we show that T1 can be obtained from T2 by
deleting finitely many of T2’s axioms.

(ii) Where T2 is essentially undecidable, we show that T2 is interpretable in
T1.

Church applied procedure (i) to prove that first-order predicate logic is undecid-
able, taking T2 to be a fragment of Peano arithmetic (PA). Tarski observes that

100For more details and further references, see Doner and Hodges [Doner and Hodges, 1988, pp.
21–23]. Several of Tarski’s students — Presburger, Szmielew, and Doner — proved decidablity
results under Tarski’s supervision (see [Doner and Hodges, 1988, pp. 23–4]). In particular,
Presburger proved the decidability of the arithmetic of the natural numbers with addition in
[Presburger, 1930] — his master’s thesis, supervised by Tarski.
101This paper is the first of three that compose Tarski [Tarski, 1953] (written in collaboration

with Mostowski and A. Robinson). Tarski reports that the observations contained in the paper
were made in 1938–9, presented to a meeting of the Association for Symbolic Logic in 1948, and
summarized in [Tarski, 1949b].
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procedure (ii) often proceeds with PA as T2 — in this way, for example, “various
axiomatic systems of set theory have turned out to be undecidable.” (p. 4)

However, Tarski also observes that the indirect method is limited:

“The indirect method in its original form was rather restricted in appli-
cations. Only in exceptional cases can a theory for which the decision
problem is discussed be obtained from another theory, which is known
to be undecidable, simply by omitting finitely many sentences from
the axiom system of the latter. On the other hand, one could hardly
expect to find an interpretation of Peano’s arithmetic in various simple
formalized theories, with meager mathematical contents, for which the
decision problem was open. With regard to theories of this kind both
the direct and indirect methods seem to fail.” (p. 4)

Tarski’s novel contribution was to extend and modify the indirect method, sig-
nificantly enlarging the scope of its application. Here the key notion is that of an
essentially undecidable theory: a theory is essentially undecidable if it and every
consistent extension of it is undecidable. The observation at the heart of Tarski’s
method is this:

(I) “[I]n order to establish the undecidability of a theory T1, it suffices to show
that some essentially undecidable theory T2 can be interpreted, not neces-
sarily in T1, but (what is much easier) in some consistent extension of T1 —
provided only that T2 is based upon a finite axiom system.” (p. 5)

Since T2 must be finitely axiomatizable, PA can no longer serve as T2. However,

“examples of essentially undecidable theories which are based upon fi-
nite axiom systems and are readily interpretable in other theories have
been found (by the direct method) among fragments of Peano’s arith-
metic. Using this fact and applying the extended indirect method,
many formalized theories — like the elementary theories of groups,
rings, fields, and lattices — have recently been shown to be undecid-
able.” (p. 5)

A particularly useful example is the theoryQ, a finitely axiomatizable and essen-
tially undecidable fragment of PA found by Tarski and Mostowski using the direct
method in 1939 (see [Tarski, 1949c]), and considerably simplified by Robinson (inNot sure which reference this

should be [?]).102 Tarski writes:
No item for Robinson 1950 in
bib. “Theory Q turned out to be very suitable for our method; its mathe-

matical content is meager, and it can easily be interpreted or at least
weakly interpreted in many different theories. Hence Theory Q has
become a powerful instrument in the study of the decision problem;

102The construction of Q is carried out in “Undecidability and Essential Undecidability in Arith-
metic”, by Mostowski, Robinson and Tarski, the second paper in [Tarski, 1953]. For historical
information about the construction, see [Tarski, 1953, pp. 39–40, fn. 1].
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with its help it has proved to be possible to obtain a negative solution
of this problem for a large variety of theories for which the problem
had previously been open.” (p. 32)

In “A general method in proofs of undecidability”, Tarski lays out the theo-
retical foundations for his indirect method. In sections 2 and 3, Tarski defines a
number of basic concepts and proves six theorems about undecidable and essen-
tially undecidable theories, with no mention yet of the notion of interpretability.
We first review some of Tarski’s definitions:

“A theory T1 is called a subtheory of a theory T2 if every sentence
which is valid in T1 is also valid in T2; under the same conditions T2 is
referred to as an extension of T1.” (p. 11)

“An extension T2 of T1 is called inesssential if every constant of T2

which does not occur in T1 is an individual constant and if every valid
sentence of T2 is derivable in T2 from a set of valid sentences of T1.”
(p. 11)

“Two theories T1 and T2 are said to be compatible if they have a com-
mon consistent extension.” (p. 12)

A theory is axiomatizable “if there is a recursive set A of valid sentences
of T such that every valid sentence of T is derivable from the set A;
if the set A is assumed to be finite, the theory T is called finitely
axiomatizable.” (p. 14)

One useful theorem Tarski proves in section 3 is the following:

THEOREM 10. Let T1 and T2 be two compatible theories such that every constant
of T2 is also a constant of T1. If T2 is essentially undecidable and finitely axioma-
tizable, then T1 is undecidable, and so is every subtheory of T1 which has the same
constants as T1.

Later in the paper (p. 32), Tarski gives an example of an application of Theorem
6. Consider theory N, the arithmetic of the natural numbers, with non-logical
constants + and ., and possibly others, such as 0 and 1 and <. By definition, a
sentence of N is valid if it is true under the standard intepretation. Let us observe
the following:

(i) N is undecidable, and since it is also complete, it is essentially undecidable
and not axiomatizable.103

103Theorem 9 states:

For a complete theory T the following three conditions are equivalent: (i) T is un-
decidable, (ii) T is essentially undecidable, and (iii) T is not axiomatizable. (See
[Tarski, 1953, p. 14].)

The proof is straightforward: for a complete theory, (i) implies (iii), and the other parts of the
theorem are immediate from the definitions.
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(ii) PA is a axiomatic subtheory of N with the same constants, and though ax-
iomatizable, PA is not finitely axiomatizable.

(iii) In turn, Q is a subtheory of PA which is finitely axiomatizable, and essentially
undecidable.

Given (iii), PA has a finitely axiomatizable, essentially undecidable subtheory. And
so it follows from our observations that N has a finitely axiomatizable, essentially
undecidable subtheory.

Now if we apply Theorem 10
“we arrive at once nt the conclusion that every theory which is compat-
ible with Q and has the same constants as Q is undecidable. Hence, in
particular, every subtheory of N in which the set of constants includes
+ and . is undecidable . . . this generalizes the results known from the
literature which concern various special subtheories of N .” (p. 32)

The theorems Tarski proves in section 3 — including Theorem 10 — make
no mention of interpretability. In section 4, Tarski widens the scope of these
theorems by introducing the notion of interpretability. It is here in section 4
that Tarski explicitly provides the grounds for the method encapsulated in (I)
above. The notion of intepretability rests on the prior notion of definition, or
more specifically the notion of a possible definition of a given constant in a theory
T. Tarski introduces the notion by way of examples, one of which is the 2-place
predicate symbol <:

“A possible definition of < in T is any sentence of the form

(i) ∀x∀y(x < y ↔ φ)

where φ is a formula of T (x and y being any two different variables
such that no variable different from both of them occurs free in φ).”
(p. 20)

Notice that while (i) is not a sentence of T , it is a sentence in every extension
of T which contains < as a constant. It is straightforward to extend the notion of
a possible definition to n-place predicate and operation letters.

Now consider two theories T1 and T2, and assume for the moment that T1 and
T2 have no non-logical constants in common. Tarski characterizes the notion of
interpretablity of one theory in another as follows:

“. . .T2 is interpretable in T1 if we can extend T1, by including in the set
of valid sentences some possible definitions of the nonlogical constants
of T2, in such a way that the resulting extension of T1 turns out to be
an extension of T2 as well.” (p. 21)

The notion of interpretability is easily extended to the general case in which T1

and T2 may have some non-logical constants in common.104 Tarski also introduces
the notion of weak interpretability:
104In the general case
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“A theory T2 is said to be weakly interpretable in T1 if T2 is inter-
pretable in some consistent extension of T1 which has the same con-
stants as T1.” (p. 21)

Tarski goes on in section 4 to prove several theorems that turn on the notions of
interpretability and weak interpretability. One of these theorems is the following:

THEOREM 11. Let T1 and T2 be two theories such that T2 is weakly interpretable
in T1 or in some inessential extension of T1. If T2 is essentially undecidable and
finitely axiomatizable, then:

(i) T1 is undecidable and every subtheory of T1 which has the same constants as
T1 is undecidable;

(ii) there exists a finite extension of T1 which has the same constants as T1 and
is essentially undecidable. (pp. 23–4)

Theorem 11 is a generalization of Theorem 10, for if T1 and T2 are compatible
and every constant of T2 is also a constant of T1, then T2 is weakly interpretable
in T1. Tarski remarks that, from the point of view of providing theoretical foun-
dations for his general indirect method,

“Theorem 11 is especially important . . . ; for, given a finitely axiom-
atizable and essentially undecidable theory, this theorem enables us
to establish the undecidability of various other theories which may be
very distant in their mathematical content from the original theory.”
(p. 30)

Theorem 11 captures in a precise way the observation in (I) above.
For an example of the application of theorems from section 4 (including Theo-

rem 11), we need one more notion, that of relative interpretability. Given a theory
T and a 1-place predicate P , the theory T (P ) is obtained by relativizing the quan-
tifiers in T to P ; that is, each subformula ∀xψ (or ∃xψ) is replaced by ∀x(Px→ ψ)
(or ∃x(Px&ψ)). Now, a theory T2 is relatively interpretable (relatively weakly in-
terpretable) in a theory T1 if T (P )

2 is interpretable (weakly interpretable) in T1.
Among the theorems concerning relative interpretability is the following:

THEOREM 12. Let T be any theory and P a unary predicate which is not a
constant of T . Then T (P ) is essentially undecidable if and only if T is essentially
undecidable. (p. 27)

Now consider again the theories N and Q, and note that, by Theorem 12, Q(P )

is essentially undecidable. Tarski writes:

“we first replace the non-logical constants in T2 by new constants not occurring in
T1 (different symbols by different symbols), without changing the structure of T2

in any other respect; if the resulting theory T2’ proves to be interpretable in T1, we
say that T2 is also interpretable in T1.” (p.21)
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“N is known to be relatively interpretable in the arithmetic of integers
J , a theory constructed analogously to N , but in which the variables
are assumed to range over the set of all integers. Hence, Q is also rela-
tively interpretable in J. By applying Theorems 11–12 we conclude that
every subtheory of J in which +, ., and possibly some other symbols
occur as nonlogical constants is undecidable. As interesting examples
of such subtheories we may mention the elementary theories of rings,
commutative rings, and ordered rings.” (p. 33)

A parallel result was established by Julia Robinson for the arithmetic A of rational
numbers (see [?]). Robinson proved that N , and so Q, is relatively interpretable inNo entry for Robinson 1949

in bib. A — and that consequently all the subtheories of A (with + and . as non-logical
constants) are undecidable. These subtheories include the elementary theories of
fields and ordered fields.

As Tarski mentions (pp. 33–34), many other results were established using
the indirect method, by Tarski and by others.105 Tarski established the unde-
cidability of the elementary theories of groups, lattices, modular lattices, comple-
mented modular lattices, and abstract projective geometries (see [Tarski, 1949d;
Tarski, 1949e]). Tarski also established undecidability results for equational the-
ories of relation algebras,106 and for certain branches of elementary geometry.107

W. Szmielew and Tarski proved that all known axiomatic systems of set theory,
with the 1-place predicate S (‘is a set’) and ‘∈’ (‘is a member of’) as nonlogical
constants, are undecidable; they proved this general result by showing that Q is
interpretable in a small axiomatic, essentially undecidable fragment of set the-
ory.108 R. M. Robinson showed that the elementary theories of various special
rings are undecidable (see [?]). Grzegorczyk proved the undecidability of distribu-
tive lattices, Brouwerian algebras, and related algebraic and geometric systems
(see [?]).No work with Szmielew in

bib for 1950. In his proofs of decidability results, Tarski took a known method — the elimi-
nation of quantifiers — to a new level. But in his proofs of undecidability results,
Tarski established a new method, an indirect method that turned on the semantic
notions of definition and interpretability. Indeed, Tarski’s method is often referred
to as the “method of interpretation”. So at the heart of Tarski’s original con-
tributions to the decision problem lies his groundbreaking work on fundamental
semantic notions.

105For a survey of more recent results inspired by Tarski’s method, see [McNulty, 1986, esp.
pp. 893–6].
106These results can be found in [Tarski, 1987a, section 8.5, pp. 251–258]. The history of these

results is reviewed in section 8.7, pp. 268–271. Relation algebras are characterized on pp. 235–
236. As we will see in Section 6 of this chapter, Tarski initiated the study of relation algebras in
his paper [Tarski, 1941b]. An equational theory is a restricted elementary theory, restricted to
those universal sentences whose quantifer-free subformulas are equations between terms.
107See Tarski [1959] and Tarski and Szczerba [1979].
108These and related results are stated without proof in W. Szmielew and Tarski [?].
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6 MORE ON LOGIC AND ALGEBRA

Tarski’s work on algebra and logic flows in two directions, from algebra to logic,
and back again. As we saw in 2.4 above, Tarski increasingly ‘algebraized’ logic,
investigating logical systems as interpretations of algebras. In the other direction,
Tarski brings metalogical questions to bear on algebras; we saw, for example, that
Tarski established the decidability of Boolean algebras (5.1 above) and the unde-
cidability of equational theories of relation algebras (5.3 above). In this section,
we say more about Tarski’s work on the connections between algebra and logic.

6.1 Boolean algebra and the calculus of classes

With the first direction in mind, recall that in [Tarski, 1935+1936] Tarski treated
the calculus of sentences and the calculus of deductive systems as two realizations
of Boolean algebra (see 2.4 above). In his 1935 paper “On the Foundations of
Boolean Algebra” [Tarski, 1935], Tarski shows that another logical theory, the
calculus of classes, can be treated in the same way.109 Tarski opens his paper as
follows:

“Boolean algebra, also called the algebra of logic, is a formal system
with a series of important interpretations in various fundamental de-
partments of logic and mathematics. The most important and best
known interpretation is the calculus of classes.” [Tarski, 1935, p. 320]

Tarski goes on to investigate several systems of Boolean algebra, and shows
that one of them — the ‘atomistic system of Boolean algebra’ - is equivalent with
the calculus of classes. So, along with [Tarski, 1935+1936], [Tarski, 1935] is a
contribution to the algebraization of logic.

Recall Postulates I–VII (presented in 2.4 above, pp. 13–14. These form what
Tarski calls the ordinary system of Boolean algebra. To these axioms, Tarski adds
three more, each of an infinite character. These axioms contain two new primitive
operations:

∑
y∈x y (the sum of all elements of the set X) and

∏
y∈x y (the product

of all elements of the set X). The additional axioms are as follows (where, recall,
B is the universe of discourse):

Postulate 8 If X ⊆ B, then (a)
∑

y∈x y ∈ B; (b) x <
∑

y∈X y for every x ∈ X ;
(c) if z ∈ B and x < z for every x ∈ X , then

∑
y∈x y < z.

Postulate 9 If X ⊆ B, then (a)
∏

y∈X yB; (b)
∏

y∈X y < x for every x ∈ X ; (c)
if z ∈ B and z < x for every x ∈ X , then z <

∏
y∈X y.

Postulate 10 If x ∈ B and X ⊆ B, then (a) x.
∑

y∈X y =
∑

y∈X(x.y); (b) x +∏
y inX y = prody inX(x+ y).

109We presented the calculus of classes in 4.2 above (it was the object language for Tarski’s
definition of truth in [Tarski, 1933a]). Variables range over classes, and there are four constants:
negation, disjunction, the universal quantifier, and inclusion.
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Postulates 1–10 form the extended (or complete) system of Boolean algebra.110

In the second half of [Tarski, 1935], Tarski constructs the atomistic system of
Boolean algebra. The set of atoms, At, is defined as follows:

DEFINITION 13. x ∈ At (1) if and only if x ∈ B and x �= 0, and (2) for every
element y ∈ B, the formulas y < x and y �= 0 imply y = x.

Tarski now adds one further axiom to Postulates 1–10:

Postulate D If x ∈ B and x �= 0, then there is an element y ∈ At such that
y < x.

Without Postulate D, the following questions are all open: Do atoms exist? Are
atoms included in every element (other than 0)? Is every element the sum of the
atoms included in it? With Postulate D, all these questions are answered in the
affirmative. The system of postulates 1-10+D is the atomistic system of Boolean
algebra. It is this system of algebra that Tarski shows to be equivalent with the
calculus of classes (see Theorem 6, p. 340).111

6.2 The calculus of relations and relation algebras

In a paper published a few years later — “On the Calculus of Relations” [Tarski,
1941b] — Tarski shows that we can take the algebraic view of another logical
theory, the calculus of (binary) relations. Tarski traces the beginnings of this
theory back to de Morgan, but “[t]he title of creator of the theory of relations was
reserved for C. S. Peirce” [Tarski, 1941b, p. 73]. Peirce’s work “was continued
and extended in a very thorough and systematic way by E. Schröder” (ibid.) in
Algebra und Logik der Relative ([Schröder, 1895]).112 Schröder’s thorough account

110In the first half of [Tarski, 1935], Tarski shows that this axiomatization can be simplified —
first to a system of four axioms, and then to a system of two (see pp. 323–333). Tarski reports
(in a footnote added later to [Tarski, 1935, on p. 333]) that these simplifications were influenced
by work of Lesniewski, specifically the deductive theory that Lesniewski called mereology (see
Lesniewski [1916] and [1927–31]).
111Tarski remarks that Postulate D “brings with it a whole series of far-reaching consequences”

[Tarski, 1935, p. 335]. Among these are the general distributive laws for addition and multipli-
cation:

(E) Let R be any class of subsets X of the set B(
P

X∈RX ⊆ B), and let S be the class of
all those sets Y which are included in the sum of all sets of the class R and have at least one
element in common with every set of the class R (Y ⊆ P

X∈RX, and if X ∈ R, then X.Y 
= 0).
Then:

(a)
Q

X∈R

P
Z∈X z =

P
Y ∈S

Q
Z∈Y z, and

(b)
P

X∈R

Q
Z∈X z =

Q
Y ∈S

P
Z∈y z.

The sentences (a) and (b) are generalizations of Postulates 5 and 10 respectively. Tarski and Lin-
denbaum showed that (E) cannot be derived from Postulates 1–10 alone; indeed, given Postulates
1–10, (E) is equivalent to Postulate D.

Tarski’s work on general distributive laws in Boolean algebras, started here in [Tarski, 1935],
was developed further in Tarski and Smith [1957a].
112This work of Schröder’s was the third volume of Vorlesungen uber die Algebra der Logik

[Schröder, 1890–1905].
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of the calculus of relations contains a large number of unsolved problems, and
indicates the direction for further investigations — consequently, Tarski expresses
his amazement that there was no specific development of this rich logical theory in
the decades that followed. Tarski sought “to awaken interest in a certain neglected
logical theory” [Tarski, 1941b, p. 89]

Tarski contrasts two methods for constructing the calculus of relations. The first
constructs the calculus as part of a larger logical theory (the functional calculus
developed by Hilbert and Ackermann). The second method is specific to the
calculus of relations, and as a result it is simpler and more elegant. This method
is an algebraic construction which originates with Tarski, and we turn to it now.

The vocabulary of Tarski’s construction comprises relation variables, the usual
sentential connectives, the familiar constants and operations from Boolean algebra
(1, 0,− ,+, and .), and five further symbols peculiar to the calculus of relations:
1′ (the identity element, or Peircean unit), 0′ (the diversity element, or Peircean
zero), � (the unary operation of conversion), ; (the binary operation of relative
product), and + (the binary operation of relative addition).113 To fix ideas, think
for the moment of relations set-theoretically, as sets of ordered pairs. Then the
identity element is the set of identity pairs, the converse of a relation R is given
by:

R̆ = {〈x, y〉|〈y, x〉 ∈ R},
and the relative product of R and S is given by

R;S = {〈x, z〉|〈x, y〉 ∈ R&〈y, z〉 ∈ S}.

Peircean zero and relative addition are dispensable, since each can be defined in
terms of the other symbols (as we shall see shortly).

The axioms of Tarski’s algebra fall into three groups: the usual axioms for
the sentential connectives, the axioms for Boolean algebra (with class variables
replaced by relation variables), and the axioms governing the further ‘Peircean’
constants and operations. Tarski lists eight axioms in this third group:

(i) R = R.

(ii) � R;S = S̆; R̆.

(iii) R; (S;T ) = (R;S);T

(iv) R; 1′ = R.

(v) R; 1 = 1v1; R̄ = 1.

(vi) (R;S).T̆ = 0 → (S;T ).R̆ = 0.

113Perhaps more familiar now than 1′, 0′, ;, and ± are the symbols 1̊, 0̊, �, and ⊕, respectively.
See for example, [Tarski, 1987a, pp. 235–6], where a characterization of a relation algebra may
also be found.
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(vii) 0′ = 1̄′.

(viii) R± S = R̄; S̄.

Axioms (i)–(iv) involve exclusively 1′,� , and ;. Though fully abstract, they are
natural and obvious when we read them in the more concrete setting of set the-
ory. Axioms (v) and (vi) establish connections between Boolean and ‘Peircean’
concepts. Axioms (vii) and (viii) can be understood as definitions of O′ and ±.114

Here we have the first presentation of the calculus of relations as an axiomatic
algebraic theory. Moreover, Tarski’s paper [Tarski, 1941b] initiated the study of
relation algebras. Tarski’s work on the arithmetic of relation algebras at Berke-
ley during the 1940s culminated with the paper “Distributive and modular laws
in the arithmetic of relation algebras” [Tarski, 1951a], which Tarski wrote with
his student Louise Chin. In [Tarski, 1951b] and [Tarski, 1952], Parts 1 and 2 of
“Boolean algebras with operators”, Tarski and Jonsson investigated algebraic sys-
tems enriched by new operations, and relation algebras figure prominently in this
work.115

114Tarski points out that these axioms can be represented geometrically. Suppose that the
relation variables denote relations between real numbers, and consider a rectangular coordinate
system in the plane. Then every relation R may be represented as the set of all points (x, y) such
that x has the relation R to y. The relations 1, 0, 1′, 0′ are respectively: the whole plane, the
empty set of points, the identity relation represented by the straight line with equation x = y,
and the diversity relation by the set of all points not on this straight line. The Boolean operations
are represented in the usual set-theoretic way. To obtain R, take the set of points - or point set
— corresponding to R and rotate it (in three dimensions) through an angle of 180o about the
line x = y. It is rather more complicated to explain relative product geometrically. We need
to supplement the coordinate system with a z-axis perpendicular to the xy-plane. Then for the
representation of R;S (in the xy-plane) proceed as follows: rotate the point set corresponding
to R through a right angle about the x-axis, draw through every point of the resulting set a
straight line parallel to the y-axis, and take the union of all these straight lines — this gives us
the ‘cylindrical’ point set R∗. Similarly, rotate the set corresponding to S through a right angle
about the y-axis, draw the lines parallel to the x-axis, and obtain the ‘cylindrical’ point set S∗.
Finally, take the intersection of R∗ and S∗ and project it orthogonally on the xy-plane. This
projection is the geometrical representation of R;S. The representation of relative sum is readily
obtained from that of the relative product, given axiom (viii).

This geometric representation provides an intuitive reading of the axioms. For example, axiom
(i) corresponds to the obvious geometric fact that if we rotate any point set through 180o about
a given straight line, and then again by 180o about the same straight line, we obtain the original
point set. Or consider axiom (v): we can see that this axiom is true under the geometric
representation. Observe first that R; 1 holds between x and y if and only if there is a z such
that xRz (the relation is independent of y). So to obtain the geometric representation of R; 1
consider the set corresponding to R, draw through every point of this set a straight line parallel
to the y-axis, and take the union of all these straight lines. Now axiom (v) says that either the
set representing R; 1 is the whole plane or the set representing 1;R is the whole plane. If R; 1
is not the whole plane then there must be a line parallel to the y-axis which does not contain
any point in the set corresponding to R. So this line is composed only of points belonging to
the set corresponding to R. If through every point of this line we draw a straight line parallel to
the x-axis and take the union of all these parallel lines, we obtain the whole plane. That is, the
relation 1;R is represented by the whole plane.
115For more on the work by Tarski and others on relation algebras, see Monk [1986, esp. pp.

901–2] and Jonsson [1986, esp. p. 884].
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Tarski’s paper [Tarski, 1941b] is another clear example of Tarski’s algebraic
treatment of logical theories. But it also shows Tarski working in the reverse
direction, raising metalogical questions for his algebraic theory. For example,
Tarski raises a question as to the equivalence of the two methods of construction.
Declaring this a difficult open question, Tarski continues:

“I can only say that I am practically sure that I can prove with the
help of the second method all of the hundreds of theorems to be found
in Schroder’s Algebra und Logik der Relative.” (p. 88)

For a second example, Tarski turns to the so-called “representation problem”:

“Is every model of the axiom system of the calculus of relations iso-
morphic with a class of binary relations which contains the relations
1, 0, 1′, 0′ and is closed under all the operations considered in this cal-
culus?” (p. 88)

M. H. Stone had proved the analogous result for Boolean algebra in the affirmative
(see [Stone, 1936]). In 1941 Tarski’s question was an open one — but Lyndon
proved that the answer is in the negative (see [Lyndon, 1950], with a correction
in [Lyndon, 1956]). Tarski maintained his interest in the metalogic of relation
algebras throughout the rest of his career — Tarski’s undecidability results for a
variety of relation algebras, mentioned above and in 5.2, are contained in his final
published monograph [Tarski, 1987a] (with Givant).116

6.3 Predicate logic and cylindric algebras

Thus far we have seen that Tarski provides algebraic treatments of a number of
logical theories: the calculus of sentences, the calculus of deductive systems, the
calculus of classes, and the calculus of (binary) relations. We turn now to Tarski’s
algebraic treatment of the predicate calculus. To this end, Tarski developed the
theory of cylindric algebras:

“This theory . . . was originally designed to provide an apparatus for an
algebraic study of first-order predicate logic.” [Tarski, 1971, Foreword,
p.1]

Tarski collaborated with Henkin and Monk to produce Cylindric Algebras Part 1
[Tarski, 1971] and Part 2 [Tarski, 1985].

In the Foreword to [Tarski, 1971], Tarski, Henkin and Monk introduce cylindric
algebras by way of cylindric set algebras. Just as Boolean algebra is an abstraction
116Tarski discusses other metalogical problems in [Tarski, 1941b], specific to the first method of

constructing the calculus of relations. He announces two results: (i) the calculus of relations is
undecidable, and (ii) there are sentences of the elementary theory of relations with only relation
variables free that cannot be transformed into an equivalent sentence of the calculus of relations.
Tarksi leaves unsolved a new decision problem regarding the transformations mentioned in (ii):
is there a procedure for deciding in a particular case whether such a transformation is possible?
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from Boolean set algebra (see Section 2.4 above, p. 12), so cylindric algebra is an
abstraction from cylindric set algebra. So let us begin with cylindric set algebras.
In the broadest terms, a cylindric set algebra of dimension α is a structure

A = 〈S,∪,∩,∼, 0,α U,Cκ, Dκλ〉κ,λ<α

where S is the universe of the algebra (the set of all its elements), ∪ and ∩ are
binary operations, ∼ and Cκ(κ < α) are unary operations, and 0,α U,Dκλ(κ, λ <
α) are distinguished elements. We now describe these ingredients in more detail.

It is helpful to describe cylindric set algebras using terminology drawn from
analytic geometry (see [Tarski, 1971, pp. 1–2]). We start with the set αU . The
elements of αU are sequences x = 〈x0, x1, . . . xk, . . .〉 of length α (α an ordinal),
where each xk is a member of an arbitrary set U . The set αU is called the α-
dimensional Cartesian space with base U, and each element x is called a point,
with coordinates x0, x1, . . . xk,. . . . The elements of the universe S are subsets of
αU . (Just as the elements of a Boolean set algebra may be subsets of an arbitrary
set V , so the elements of a cylindric algebra are subsets of a certain Cartesian
power of an arbitrary set U .) The operations ∪,∩ and are the usual Boolean
operations; indeed, the structure

A = 〈S,∪,∩,∼ 0,α U〉

is a Boolean set algebra, with S closed under the Boolean operations.
The distinguished element Dκλ and the unary operation Cκ are specific to cylin-

dric set algebras. Dκλ is a certain subset of αU — its members are the points of αU
whose kth coordinate is identical to its λth coordinate. The point set Dκλ is called
the κ, λ-diagonal set. The aptness of the name is easily seen if we consider the
case α = 2 (the case where the Cartesian space with the base U is 2-dimensional)
— here Dκλ is the main diagonal line of the coordinate system. In general, for
k �= l, Dκλ is the hyperplane defined by xκ = xλ.

The unary operation Cκ is called the κth cylindrification. Intuitively, given a
subset X of the space αU,Cκ(X) is the cylinder obtained if each point in X is
‘stretched out’ parallel to the κth coordinate axis. More precisely,

a point y is in Cκ(X) iff there is a point in X which differs from y only
in its κth coordinate.

(It is easy to check that if Cκ is applied to the diagonal set Dκλ, it yields αU .)117

The universe S is closed under cκ.
We now move to the general notion of a cylindric algebra by abstracting from

cylindric set algebras. We consider the algebraic identities that hold in all cylindric
set algebras, and select some of them as axioms for the general, abstract theory of

117In general, Cκ(Dκλ) = Cλ(Dκλ) =α U . For example, consider the case α = 2. If the
01 diagonal is stretched out parallel to either the 0 axis or the 1 axis, the result is the entire
2-dimensional Cartesian space with base U .
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cylindric algebras. Changing the terminology, we take a cylindric algebra to be a
structure

A = 〈A,+, .,−, 0, 1, cκ, dκλ〉κ,λ<α

where A is an arbitrary set, +, .,−, 0, 1 are the familiar Boolean operations and
distinguished elements, cκ (for κ < α) is a unary operation (still called the κth
cylindrification), and dκλ (for κ, λ < α) is a distinguished element (called the κλ-
diagonal element). The axioms of a cylindric algebra fall into two groups. The first
group of axioms characterize the Boolean algebra 〈A,+, .,−, 0, 1〉 (For example,
we could use Postulates I–VII from 2.4 above.) The second group is composed
of equational axioms that are special to cylindric algebras. These axioms are as
follows, where x, y are arbitrary elements of A, and κ, λ, µ are arbitrary ordinals
less than α:

1. cκ(0) = 0.

2. x.cκ(x) = x.

3. cκ(x.cκ(y)) = cκ(x).cκ(y).

4. cκ(cλ(x)) = cλ(cκ(y)).µ

5. cκ(dκλ) = 1.

6. cµ(dκµ.dµλ) = dκλ, provided that µ �= κ, λ .

7. cκ(dκλ.x).cκ(dκλ.− x) = 0, provided κ �= λ .

These axioms are natural enough if we keep in mind cylindric set algebra.118 But
in order to grasp the motivation for them, and for cylindric algebras generally,
we must remember their original purpose: to serve “as an instrument for the
algebraization of predicate logic” [Tarski, 1971, p. 4]. Cylindric algebras can
be viewed not only as an abstraction from cylindric set algebra, but also from
first-order logic:

“The notion of a cylindric algebra can be considered as a common,
algebraic abstraction from its two sources.” [Tarski, 1985, p. v]

So consider first-order predicate logic with identity, together with Tarski’s defi-
nitions of model and (semantic) consequence. Let φ be the denumerable set of all
formulas of (first-order) predicate logic. Let Σ be a set of sentences — or a theory
— from the language of predicate logic. We now define the notion of equivalence
relative to a theory Σ as follows:

DEFINITION 14. φ and ψ are equivalent under set Σ, written φ ≡sum ψ iff φ↔ ψ
is a consequence of Σ.
118For example, consider Axiom 2 in the concrete setting of cylindrical set algebra. It is obvious

that if we consider the set of points x and its cylindrification c(x), then the points they share in
common are just the points of x. And we have already seen the intuitive backing for Axiom 5.
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It is easy to see that ≡P is an equivalence relation on φ. So for each formula
φ, there is an equivalence class [φ] of all formulas ψ such that φ ≡Σ ψ , and the
union of these mutually exclusive equivalence classes is φ (that is, ≡Σ partitions
φ). Let φΣ be the set of these equivalence classes.

Now we form a cylindric algebra for a theory Σ:

AΣ = 〈Σ,+, .,−, 0, 1, cκ, dκλ〉κ,λ<ω

where
[φ] + [ψ] = [φ ∨ ψ]
[φ].[ψ] = [φ&ψ]
− [φ] = [¬φ]
cκ[φ] = [∃vκφ]
dκλ = [vκ = vλ]

and the distinguished elements 0 and 1 are [vκ �= vκ] and [vκ = vκ] respec-
tively. It is straightforward to check that this algebra satisfies all the axioms
of ω-dimensional cylindric algebras, in particular Axioms 1–7.119

The significance of cylindrical algebras for the algebraic study of predicate logic
“is rather obvious” [Tarski, 1971, p. 8]. To paraphrase what Henkin, Monk and
Tarski go on to say, theories are basic entities in metalogical discussions just as
algebraic structures are basic entities in algebraic research. By correlating the
algebra Σ with any theory Σ, we have established a correspondence (which turns
out to be one-one) between first-order theories and cylindric algebras of formulas.
The basic metalogical problems for a fixed theory Σ are problems of the type: “Is
a given sentence φ a consequence of the theory Σ?”. Each such problem clearly
reduces to an algebraic problem concerning the associated algebra of formulas:
“Does the equation [φ]=1 hold in the algebra AΣ ?”

For Tarski, then, cylindric algebras (like Boolean and relational algebras) were
a tool for algebraizing logic. But Tarski also brought logic to bear on the algebras
- like Boolean and relational algebras, cylindrical algebras are themselves a fit
subject for metalogical investigation. Chapter 4 of [Tarski, 1985] applies logical
notions to cylindrical algebras: the authors consider the model theory of cylindrical
algebras in the first part of the chapter, and various decision problems in the
second. Decidability and undecidability results are obtained for various cylindrical
algebras.

In the Foreword to [Tarski, 1971], Tarski, Henkin and Monk trace the path that
led to their collaboration:

“The theory of cylindric algebras was founded by Tarski, in collabora-
tion with his former students Louise H. Chin (Lim) and Frederick B.
Thompson, during the period 1948-52. Soon thereafter Henkin became
interested in the subject and began to work with Tarski on its further

119For example, Axiom 1 holds since the existential generalization of any member of [vκ 
= vκ]
is a member of [vκ 
= vκ]; Axiom 2 holds since [φ] = [φ&∃xκφ]; Axiom 4 turns on the equivalence
of ∃vκ∃vλφ and ∃vλ∃vκφ; and Axiom 5 holds since cκ(dκλ) = [∃vκ(vκ = vκ)] = [vκ = vκ] = 1.
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development. In 1961 they published a fairly extensive outline of their
research, and the plan was first formulated to prepare a detailed mono-
graph on the subject. Subsequently Monk’s substantial contributions
to the theory made a joining of efforts desirable, and thus the present
team of authors was finally formed.” [Tarski, 1971, p. 23]

Part 2 of Cylindric Algebras [1985m] was published in 1985; its first draft was
two-thirds complete when Tarski died. The monograph Cylindric set algebras
[Tarski, 1981], authored by Tarski, with Andreka, Henkin, Monk and Nemeti,
was another major contribution to the theory. The theory of cylindric algebras
has been an active field of research: for a survey of major results and further
references, see Monk [Monk, 1986, esp. 903–5].

7 MORE ON GEOMETRY

7.1 The metamathematics of elementary geometry

We have already seen one of Tarski’s most celebrated metamathematical result
in geometry: the decidability of elementary (or first-order) Euclidean geometry,
discovered in 1930 but not published in full until [Tarski, 1948a] (see section 5.2
above). Tarski returned to the metamathematics of geometry in “What is ele-
mentary geometry?” [Tarski, 1959]. Recall that in fn 18 of [Tarski, 1948a] Tarski
briefly considers an axiomatic theory of Euclidean geometry — it is this theory of
elementary geometry that Tarski investigates further in [Tarski, 1959].

In [Tarski, 1959], Tarski is fully explicit about the reference of the term ‘ele-
mentary geometry’. Loosely it refers to the geometry which is based on Euclid’s
Elements and which forms the subject matter of secondary school geometry. But
for metamathematical investigations, we need a more precise description; for one
thing, we must specify the language in which the sentences of elementary geome-
try are formulated. As we saw in Section 5.2 above, the language of elementary
geometry is the first-order predicate calculus — the first-order variables range over
individuals (points), and there are no second-order or set-theoretical devices. The
language contains two primitive predicates: a three-place predicate Bxyz (‘y is
between x and z’), and the 4-place predicate Dxyzw (‘the distance from x to y is
equal to the distance from z to w’).

Tarski goes on to present a list of 12 axioms and one axiom schema. (See
[Tarski, 1959, pp. 22–23]. This list supersedes the one in [Tarski, 1948a, fn. 18],
which was found to contain superfluous axioms. Such refinements aside, Tarski’s
axiom system essentially dates back to his university lectures in the years 1926–27,
as Tarski reports in [Tarski, 1967, p. 341, fn 34]. These axioms form the basis
for elementary geometry, or G for short. They are the universal closures of the
following:

A1. Bxyx→ x = y. (Identity Axiom for Betweenness)
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A2. Bxyu&Byzu→ Bxyz. (Transitivity Axiom for Betweenness)

A3. Bxyz&Bxyu&x �= y → Bxzu ∨ Bxuz. (Connectivity Axiom for Between-
ness)

A4. Dxyyx. (Reflexivity Axiom for Equidistance)

A5. Dxyzz → x = y. (Identity Axiom for Equidistance)

A6. Dxyzu&Dxyvw → Dzuvw. (Transitivity Axiom for Equidistance)

A7. Bxzw&Byuz → ∃v(Bxvy&Bxuv). (Pasch’s Axiom)120

A8. Bxut&Byuz&x �= u→ ∃v∃w(Bxyv&Bxzw&Bvtw). (Euclid’s Axiom)121

A9. Dxyx′y′&Dyzy′z′&Dxux′u′&Dyuy′u′&Bxyz&Bx′y′z′&x �= y → Dzuz′u′).
(Five-Segment Axiom)

A10. ∃z(Bxyz&Dyzuv). (Axiom of Segment Construction)

A11. ∃x∃y∃z(¬Bxyz&¬Byzx&¬Bzxy). (Lower Dimension Axiom)

A12. Dxuxv&Dyuyv&Dzuzv&u �= v → BxyzvByzxvBzxy. (Upper Dimension
Axiom)

120In [79], Tarski and Sczcerba provide the following figure for Pasch’s axiom:
x

z

wu

n
y

121We can associate with Euclid’s Axiom the following figure:
x

y u z

n
t w

A8 says in essence: there is always a straight line through a point t inside an angle (here, angle
yxz) that touches both sides of the angle (see [Tarski, 1983b, p. 13]).

Notice that the line vw meets the lines yv and zw in such a way that the angles yvt and twz
add up to less than two right angles. Compare A8 with Euclid’s original formulation of his Fifth
Postulate:

“That, if a straight line [vw] falling on to straight lines [yv and zw] make the interior
angles on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet [at x] on that side on which are the angles less than two right
angles.”

A8 is provably equivalent to the Parallel Axiom (Axiom IV in Hilbert’s [Hilbert, 1922]):

If A is a line and a is a point that does not belong to A, then there is exactly one
line which is parallel to A to which a belongs.

For a proof of the Parallel Axiom (Hilbert’s IV) from A8, see [?, p. 123].
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A13. (Elementary Continuity Axioms)

∃z∀x∀y(φ&ψ → Bzxy) → ∃u∀x∀y(φ&ψ → Bxuy)]

where φ and ψ are formulas, z and y do not occur free in φ, and z and x do
not occur free in ψ.

Axiom 8 is crucial to the formation of Euclidean geometry. If we omit it, we have
the theory of absolute geometry; and if we admit instead its negation, we have
Bolyai–Lobachevsky geometry. The system comprising A1–A12 is worthy of study
in its own right, since much of Euclidean geometry proceeds without A13.122

A13 is a first-order analogue of the second-order axiom of continuity. Tarski
notes that standard axiomatizations of G include a continuity axiom that contains
second-order variables X,Y ,. . . ranging over sets of points. A typical formulation
is:

∀X∀Y {∃z∀x∀y[x ∈ X&y ∈ Y → Bzxy] → ∃u∀x∀y[x ∈ X&y ∈ Y → Bxuy]}.
The first-order schema contained within A13 is obtained by replacing ‘x ∈ X ’ by

an arbitrary first-order formula in which x occurs free, and ‘y ∈ Y ’ by an arbitrary
first-order formula in which y occurs free. A13 can be viewed as a restriction of
the second-order axiom to the definable sets.

Tarski goes on to address four fundamental metamathematical problems. The
first is the representation problem. In general, the representation problem for a
theory is the problem of characterizing all of the theory’s models. In the case of
G, the answer is given by the following theorem:

THEOREM 15 (Representation). M is a model of G if and only if M is isomor-
phic with the Cartesian space over some real closed field F .123

The second and third problems are the completeness problem and the decidabil-
ity problem. Tarski provides positive answers to both: G is complete and consistent
[Tarski, 1959, p. 25, theorem 2], and decidable [Tarski, 1959, p. 26, Theorem 3].
The fourth problem is the problem of finite axiomatizability. Here the question is:
Can the axiom system be replaced by an equivalent finite system? The answer is
negative: G is not finitely axiomatizable [Tarski, 1959, p. 26, Theorem 4].124

122For more in this vein, see [Szczerba, 1986, p. 909].
123This is [Tarski, 1959, p. 24, Theorem 1]. A model of G is a structure 〈A,B,D〉, where A

is an arbitrary non-empty set, B is a 3-place relation and D is a 4-place relation, and where all
the axioms of G hold if the variables are taken to range over elements of A, and the constants B
and D are taken to refer to B and D respectively. Let F be a real closed field 〈F,+, .,=〉. (For a
definition of real closed field, see for example [Chang and Keisler, 1973, p. 41].) Consider the set
AF = F×F of all ordered pairs x = 〈x1, x2〉 with x1 and x2 in F . We define the relations BF and
DF as follows: BF (x, y, z) iff (x1−y1).(y2−z2) = (x2−y2).(y1−z1)&0 = (x1−y1).(y1−z1)&0 =
(x2 − y2).(y2 − z2).DF (x, y, z, w) iff (x1 − y1)2 + (x2 − y2)2 = (z1 − w1)2 + (z2 −w2)2.

(Compare clauses (iv) and (v) in Section 5.1) The structure C2 = 〈AF , BF , DF 〉 is called the
Cartesian space over F . We now have all the ingredients of Theorem 9. Tarski provides an
outline of a proof in [Tarski, 1959, pp. 24–25].
124Tarski provides an outline of the proof on pp. 26–7.
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This negative result might be considered a drawback of Tarski’s treatment of
elementary geometry. Further, there are notions of textbook geometry that cannot
be expressed in G — for example, the notions of the circumference and area of a
circle, and the notion of a polygon with arbitrarily many vertices. In [Tarski, 1959],
Tarski considers two other ways of interpreting the term ‘elementary geometry’ by
way of alternative axiomatizations. The first is of greater expressive power than
G, and can accommodate the geometric notions just mentioned; however, Tarski
notes that this theory is undecidable, and that the other three metamathematical
problems remain open. The second alternative is finitely axiomatizable; however,
it is weaker than G and consequently captures fewer validities, and its decision
problem is open. Tarski concludes:

“The problem of deciding which of the various formal conceptions of
elementary geometry is closer to the historical tradition and the col-
loquial usage of this notion seems to be rather hopeless and deprived
of broader interest. The author feels that, among these various con-
ceptions, the one embodied in [G] distinguishes itself by the simplicity
and clarity of underlying intuitions and by the harmony and power of
its metamathematical implications.” (p. 31)

A recent, detailed study of Tarski’s theory G can be found in [Tarski, 1983b].
This, and its bibliography give a good sense of Tarski’s extensive influence on
research in foundational geometry and metamathematics.

Tarski’s interest in the metamathematics of geometry was not restricted to
Euclidean geometry. As we noted in Section 5.2, Tarski proved that certain sys-
tems of non-Euclidean and projective geometry are decidable; and as we noted
in Section 5.3, Tarski showed that abstract projective geometries are undecidable
(see [Tarski, 1949e]). Tarski also investigated the metalogic of affine geometry
in [Tarski, 1965a] and [Tarski, 1979], in collaboration with L.W. Szczerba. As
Szczerba puts it, affine geometry is roughly the theory of the betweenness relation
on the open and convex subsets of the Euclidean plane.125 A precise axiomatic
characterization of general affine geometry (GA) is presented in [Tarski, 1979].
The system of axioms for GA consists of A1, A2, A3, A7, A11, and A13, together
with three further axioms specific to affine geometry.126 Tarski and Szczerba solve

125See [?, p. 910].
126The three further axioms are as follows:
Extension Axiom The universal closure of xBxyz&x?y.
Desargues’ Axiom The universal closure of Bwxx′&Bwyy′&Bwzz′&Bxyz′′&x′y′z′′&Byzx′′&

By′z′x′′&Bxzy′′&Bx′z′y′′&¬Bwxy&¬Bxyw&¬Bywx&¬Bwyz&¬Byzw&¬Bzwy&¬Bwzx&
¬Bzxw&¬Bxwz?Bx′′y′′z′′.
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Upper Dimension Axiom The universal closure of v[{Byvz&(BxvwvBvwx ∨
Bwxv)} ∨ {Bzvx&(Byvw ∨ Bvwy ∨ Bwyv)} ∨ {Bxvy&(Bzvw ∨ Bvwz ∨ Bwzv)}].
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the representation problem for GA, and go on to show that GA is incomplete (in
fact GA has 2ℵ complete extensions), undecidable (in fact hereditarily undecid-
able),127 and not finitely axiomatizable. In [Tarski, 1979] Tarski and Szczerba also
investigate the metamathematical properties of various extension of GA. One of
these — Euclidean affine geometry (EA) — is obtained by adding Euclid’s Axiom
A8 to the axioms for GA. EA is the main subject of [Tarski, 1965a], where it
is shown, like GA, to be incomplete, (hereditarily) undecidable, and not finitely
axiomatizable.

7.2 Primitive concepts of geometry

Another aspect of Tarski’s metamathematical treatment of geometry is his work
on primitive notions in geometry. We have seen that Tarski’s formalization of Eu-
clidean geometry requires just two primitive concepts — betweenness and equidis-
tance. For Tarski, this economy is desirable and metamathematically significant.
(In this respect, Tarski’s formalization is superior to Hilbert’s.) The question
arises: How economical can we be? Can we find a single geometric notion in terms
of which all the concepts of Euclidean geometry can be defined?

More narrowly, we can ask whether there is a relation between points that
can serve this purpose. This is the leading question of Tarski’s papers [Tarski,
1956a] (with E.W.Beth) and [Tarski, 1956b]. This search is constrained by a
result established by Tarski and Lindenbaum: No binary relation between points
can serve this purpose.128 Still, Pieri showed that a certain three-place relation I
comes close, where I(x, y, z) holds iff the distance from x to y is the same as the
distance from x to z (see [Pieri, 1908]). (In the 2-dimensional case, I(x, y, z) holds
iff x, y and z are the vertices of an isosceles triangle, with the line from y to z as
the base; in the 1-dimensional case, x is the midpoint of the line from y to z.) The
relation I can serve as the only primitive for n-dimensional Euclidean geometry,
provided that n ≥ 2. The equidistance relation denoted by D also comes close,
since for n ≥ 2 the betweenness relation B is definable in terms of D.

Can we do better than I and D? In [Tarski, 1956a], Tarski considers the
‘equilaterality’ relation E : E(x, y, z) holds if the distances between x, y and z are
equal. (In the 2-dimensional case, E(x, y, z) holds if x, y and z are the vertices of
an equilateral triangle.) Can E serve as the only primitive notion of Euclidean
geometry? Tarski shows that the answer is affirmative for n-dimensional Euclidean
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y

127A theory T is hereditarily undecidable if not only T but also every subtheory of T with the
same constants is undecidable.
128See Lindenbaum and Tarski [1936c]. Indeed, Lindenbaum and Tarski announce that in

elementary Euclidean geometry no 2-place relation can be defined “apart from the universal
relation, the empty relation, identity and diversity.” [Tarski, 1936c, p. 389]
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geometry as long as n ≥ 3; the answer is negative for n = 1 or n = 2. So E joins
the ranks of other ternary relations, like I, which can serve as the sole primitive
concept of n-dimensional Euclidean geometry for certain n, but not all n. In
[Tarski, 1956b], Tarski considers in full generality the question of which ternary
relations can serve as the sole primitive of Euclidean geometry for all n, and
establishes a property that any such relation must have (and which E and I in
particular fail to have, as Tarski shows).

Tarski’s search for a single primitive relation in [Tarski, 1956a] and [Tarski,
1956b] was limited to relations between points. Much earlier, in the paper ‘Foun-
dations of the geometry of solids’ [Tarski, 1929a], Tarski developed a geometry
of solids, in which the primitive individuals are not points but spheres — or bet-
ter, balls.129 Tarski was responding to a challenge set by Lesniewski: to estab-
lish the foundations of a geometry of solids. In laying these foundations, Tarski
works within the framework of Lesniewski’s deductive theory of mereology (see
Lesniewski, [1916] and [1927–31]). Just one 2-place relation — the relation of part
to whole — is needed for Lesniewski’s theory. Tarski showed in [Tarski, 1929a]
that we can define all the concepts of 3-dimensional Euclidean geometry in terms
of just the notions of ball and the part-whole relation.

The key to Tarski’s demonstration is this: we may define the notion of point and
the relation I above in terms of balls and the part-whole relation. The definitions
are as follows:

DEFINITION 16. A point is the class of all balls which are concentric with a
given ball. (See Definition 6, p. 27).130

DEFINITION 17. I(x, y, z) iff there exists a ball W which belongs to the point x
and which satisfies the following condition: no ball V belonging to the point y or
the point z is a part of W or disjoint from W . (See Definition 7, p. 27).131

Given Pieri’s result (above), it follows that every concept of 3-dimensional Eu-
clidean geometry can be defined in terms of balls and the part-whole relation —
and the result extends to n-dimensional Euclidean geometry for n > −2. As
Szczcerba remarks (in [?]), the notion of a ball seems much more intuitive than
the notion of a point — accordingly, this system of solid geometry is known as
Tarski’s natural geometry.

129In the original paper [Tarski, 1929a], Tarski used the word for ‘sphere’. But in a footnote
added later (fn. 1, p. 26), Tarski suggests that, since he is developing a geometry of solids and
not a point geometry, it would be advisable to replace the word ‘sphere’ by ‘ball’.

Tarski worked with open balls. S. Jaskowski — in the paper [Jaskowski, 1948] cited by Tarski in
[Tarski, 1929a] (see fn. 2, p. 26) and by Szczerba in [Szczerba, 1986, p. 911] — simplified Tarski’s
geometry by modifying the definition of the relation ‘A is concentric with B’, and working with
closed instead of open balls.
130Tarski observes (in [Tarski, 1929a, p. 27, fn. 1]) that balls are (first-order) individuals, while

points are second-order objects. In point geometry, the reverse is true.
131Intuitively, the lines xy and xz are radii of the ball W .
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7.3 The Banach-Tarski paradox

The famous Banach-Tarski paradox is a startling theorem proved by Tarski and
Stefan Banach in their paper “Sur la decomposition des ensembles de points en
parties respectivement congruentes” [Tarski, 1924d]. This was Tarski’s second
published paper in geometry, and like the first — [Tarski, 1924b] — it is con-
cerned with the notion of equivalence by finite decomposition. According to the
classical definition of this notion, two geometric figures are equivalent by finite
decomposition if one can be decomposed (or “cut up”) into finitely many figures
that can be rearranged to form the other one. Tarski worked with a generalized
set-theoretical version of this classical notion, which treats geometric figures such
as polygons and polyhedra as sets of points. Tarski characterizes equivalence by
finite decomposition along these lines:

Two sets of points A and B (in particular, two polygons or polyhe-
dra) are said to be equivalent by finite decomposition iff A can be
decomposed into finitely many disjoint sets of points A1, A2, . . . An,
B can be decomposed into the same number of disjoint sets of points
B1, B2, . . . Bn, and Ai and Bi are congruent, for 1 ≤ i ≤ n.132

In [Tarski, 1924b] Tarski considers two theorems that were known to hold for
the classical notion of equivalence by finite decomposition:

Theorem 1 Two arbitrary polygons, where one is contained in the other, are never
equivalent by finite decomposition.

Theorem 2 Two polygons are equivalent by finite composition if and only if they
are equal in area.

Tarski shows in [Tarski, 1924b] that these theorems also hold for the set-theoretical
version of equivalence by finite decomposition.

These results about polygons appear natural and intuitive, and one might expect
them to hold for polyhedra too. But they do not. At the very end of [Tarski,
1924b], Tarski remarks that, if we take equivalence by finite decomposition in
the set-theoretical sense, it can be shown that Theorems 1 and 2 do not extend
to polyhedra. Tarski announces the following theorem, proved in the yet-to be-
published paper [Tarski, 1924d]:

Two arbitrary polyhedra (of the same volume or not) are equivalent
by finite decomposition. [Tarski, 1924b, p. 64]

As Tarski cautiously puts it, the result “seems perhaps paradoxical” (p. 64). This
theorem is the Banach-Tarski paradox.133

The theorem is more precisely stated in [Tarski, 1924d] as follows:
132See Tarski [1924b, p. 64].
133Previous paradoxical decompositions were constructed by Vitali [Vitali, 1905] and Hausdorff

[Hausdorff, 1914]. Hausdorff’s work was a major influence on Banach and Tarski’s paper. For
more historical background, see [Wagon, 1985, Chapters1–3].
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If A and B are any two sets of points in 3-dimensional Euclidean space,
each being bounded and with a non-empty interior, then A and B are
equivalent by finite decomposition.134

In particular, then, two spheres of different radii are equivalent by finite decom-
position (in sharp contrast to the 2-dimensional case of circles). This encourages
dramatic statements of the paradox:

“It is possible to cut up a pea into finitely many pieces that can be
rearranged to form a ball the size of the sun!”135

or

“A ball, which has a definite volume, may be taken apart into finitely
many pieces that may be rearranged via rotations of R3 to form two,
or even 1,000,000 balls, each identical to the original one.”136

The theorem extends to n-dimensional Euclidean space, for n ≥ 3.137

Jan Mycielski calls the Banach-Tarski result “the most surprising result of theo-
retical mathematics”.138 One kind of response to the paradox — the most common
— has been to take the result at face value, and accept it as a demonstration that
mathematics can sometimes fail in the most radical way to match up with physical
reality.139 A different kind of response — little seen nowadays– - has been to treat
it as the conclusion of a genuine paradox, a conclusion that is so counterintuitive
that we are forced us to review the argument that produced it. For some the
culprit is the Axiom of Choice, which is indispensable to the proof.140

134See [Tarski, 1924d, p. 140, Theorem 24]. In the statement of the theorem, Tarski uses the
term “ensembles-frontieres”. This term is defined in fn 1, p. 133: it applies to exactly those sets
of points that have no interior point.
135[Wagon, 1985, p. xiii].
136[Wagon, 1985, p. 28].
137See [Tarski, 1924d, p. 121], where the theorem is stated in its fully general form, and also p.

137, where Tarski indicates how to proceed with the proof for n3. Moore writes that Banach and
Tarski independently discovered the Banach–Tarski paradox, and agreed to write a joint paper.
In a personal communication to Moore, Tarski reported that the general result was due to him
(see [Moore, 1982, p. 285, fn. 3].
138See Mycielski’s Foreword to [Wagon, 1985].
139The mathematical lesson to learn is that the Banac-h-Tarski theorem

“precludes the existence of finitely-additive, congruent-invariant measures over all
bounded subsets in [three-dimensional space] R3.”

(Mycielski, in the Foreword to [Wagon, 1985])
140For a detailed discussion of the role of the Axiom of Choice in the proof of the Banach-Tarski

theorem, see [Wagon, 1985, Chapter 13]. Wagon’s book is a recent mathematical work motivated
by the Banach–Tarski result. It contains a number of open problems, old and new. One of these
Wagon calls “Tarski’s Circle-Squaring Problem” (posed in 1925): Is a circle (with interior points)
equivalent by finite decomposition to a square of the same area? (See [Wagon, 1985, p. 101ff]

for a discussion of this and related problems.)
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8 SET THEORY

Tarski’s first published paper [Tarski, 1921] and his last published monograph
[Tarski, 1987a] were both works in set theory. Tarski’s early interest in set theory
was inspired by Sierpinski, who, together with Janiszewski and Mazurkiewicz,
started up the Warsaw School of Mathematics in 1919. In the 1920s and 1930s,
Tarski wrote a number of papers on topics in general set theory. The subject of
[Tarski, 1921] was the notion of a well-ordered set; subsequent papers dealt with
such topics as the theory of finite sets, cardinal arithmetic, and the axiom of choice
and its equivalents. As set theory developed and grew more sophisticated and
specialized, so did Tarski’s work. Tarski was a seminal figure in the development
of the theory of large cardinals — he produced highly influential work on large
cardinals from 1930 to the 1960s. Tarski also investigated set theory from the
algebraic perspective, a perspective which - as we have seen - he so often brought
to logic. In Cardinal Algebras [Tarski, 1949f] and Ordinal Algebras [Tarski, 1956c]
Tarski investigated cardinal and ordinal addition within the framework of abstract
algebraic systems. And in A Formalization of Set Theory without variables [Tarski,
1987a], Tarski and Steven Givant developed set theory within the framework of
abstract relation algebras (see section 6.2 above for more on relation algebras).

8.1 General set theory

In his paper [Sierpinski, 1918], Sierpinski investigated in detail the role that the
Axiom of Choice played in set theory and analysis, and threw out a challenge to
mathematicians: determine the deductive relations between the Axiom of Choice
and other propositions.141 Tarski responded to this challenge in [Tarski, 1924A].
At the outset of this paper, Tarski lists seven propositions that are equivalent
to the Axiom of Choice. Each of these propositions is a statement of cardinal
arithmetic, where m,n, p, q are infinite cardinal numbers:

I. m.n = m+ n

II. m = m2

III. If m2 = n2 then m = n.

IV. If m < n and p < q then m+ p < n+ q.

V. If m < n and p < q then m.p < n.q.

VI. If m+ p < n+ p then m < n.

VII. If m.p < n.p then m < n.142

141See Moore [Moore, 1982, Chapter 4.1] for more on Sierpinski’ work and influence.
142Tarski’s proof of the equivalences is based on Zermelo’s system of axioms (omitting Choice,

of course) together with two additional axioms which introduce the notion of cardinal number:
1. Every set has a cardinal number.
2. Two sets have the same cardinal number if and only there is a 1-1 correspondence between
them.
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In their joint paper [Tarski, 1926a], Tarski and Lindenbaum added to this list seven
more propositions, all of them statements from the theory of cardinal numbers (see
[Tarski, 1926a, pp. 185–6, Theorem 82]).143 Thus, Tarski’s early work in [?] andno entry for Robinson 1951

or Grzegorczyk 1951 in bib. [Tarski, 1926a] was a major contribution to our understanding of the relation
between cardinal arithmetic and the Axiom of Choice, and in particular to the
project of finding so-called ‘cardinal equivalents’ of Choice.144

Another topic of Tarski’s early work in set theory was the theory of finite sets.
In [Tarski, 1924c] Tarski systematically constructed a theory of finite sets on the
basis of Zermelo’s first five axioms (Extensionality, Elementary sets, Separation,
Power set, Union) — Zermelo’s remaining two axioms, the Axiom of Choice and
the Axiom of Infinity, were excluded. Tarski remarks that no previous attempt to
construct such a theory had been completely successful; for example, Dedekind’s
treatment in [Dedekind, 1888] did not have a solid axiomatic foundation, and
Russell and Whitehead’s account (in [Russell and Whitehead, 1910–13]) is specific
to their theory of types (see [Tarski, 1924c, pp. 67–8].)

Tarski’s own starting point was a new definition of finite set:

A set A is finite iff every non-empty set K of subsets of A has a ⊆-least
element B (that is, an element B such that no member of K is a proper
subset of B). (See [Tarski, 1924c, p. 71, Definition 3].)

From this starting point, Tarski went on to prove a large number of theorems which
established all the fundamental properties of finite sets with which he was familiar.
Tarski’s definition differs from the standard arithmetic definition, according to
which a set is finite iff it is either empty or there exists a 1-1 correspondence
between it and the set {1, 2, . . . , n} for some finite n. In contrast to this usual
definition, Tarski’s definition is independent of the concept of finite number. It
also differs from Dedekind’s, according to which a set is finite if there is no 1-1
correspondence between it and any of its proper subsets.

The question naturally arises as to the equivalence of these various definitions,
and this question is also investigated in [Tarski, 1924c]. Tarski shows that his
definition is equivalent to the usual arithmetical one (see [Tarski, 1924c, p. 80]),
thereby showing that the theory of finite sets can be constructed from the usual
definition without the need for the Axiom of Choice. He also shows if a set is
finite in his sense, then it is finite in Dedekind’s sense. For Tarski, the reverse
direction was an open problem: without Choice, it was not known how to establish
the equivalence of his definition and Dedekind’s (see p. 95). In an appendix to
[Tarski, 1924c], Tarski states a number of open problems of this kind, generated

143Tarski and Lindenbaum’s [Tarski, 1926a] was an extensive summary of their recent results
in set theory, presented without proofs.
144In [Rubin and Rubin, 1963], Herman and Jean Rubin present over one hundred equivalents of

the Axiom of Choice — and one category of equivalents they call ‘cardinal equivalents’. For more
on Tarski’s work on cardinal equivalents, see [Moore, 1982, pp. 213–219, Section 4.3]. Other work
on cardinal arithmetic published by Tarski in the 1920s includes [Tarski, 1925; Tarski, 1926a;
Tarski, 1929c]. Tarski later obtained further cardinal equivalents of the Axiom of Choice in
[Tarski, 1938a], a paper that investigated inaccessible cardinals (see subsection 2 below).
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by five alternative definitions of finite set that Tarksi lists (on p. 115). It turned
out that none of these definitions — among them Tarski’s and Dedekind’s — were
equivalent in the absence of the Axiom of Choice. So while Tarski’s definition
permitted the construction of the theory of finite sets without Choice, a number
of alternative definitions (including Dedekind’s) did not.145

8.2 Large cardinals

Tarski initiated the systematic study of large cardinals, and he and his school
was largely responsible for its continuing development. An appropriate starting
point is Tarski and Sierpinski’s joint paper [Tarski, 1930a] in which they define
the notion of an inaccessible cardinal. Their definition runs as follows:

A cardinal number m is inaccessible iff it is not the product of a fewer
number of cardinals of lesser power. (See Definition 1, p. 289).

The intuitive idea is that an inaccessible cardinal cannot be obtained from below.
As Tarski and Sierpinski remark, 0 is clearly an inaccessible cardinal: it cannot be
obtained from the product of finitely many finite cardinals. In current terminology,
Tarski and Sierpinski’s definition characterizes the class of strongly inaccessible
cardinals.

In [Tarski, 1938a], Tarski provided alternative characterizations of the strongly
inaccessible cardinals. He also characterized the weakly inaccessible cardinals, as
follows:

m is a weakly inaccessible cardinal iff m = ℵα where α is a regular
limit ordinal.146

Tarski shows, with the help of the Axiom of Choice, that if a cardinal is strongly
inaccessible, it is weakly inaccessible (pp. 360–361). He also proves the reverse
direction, but, as he makes fully explicit, he does so only with the help of the
Generalized Continuum Hypothesis (p. 362).

Tarski took inaccessible cardinals to be natueal objects of set theory:

“. . . the belief in the existence of inaccessible cardinals > ω (and even
of arbitrarily large cardinals of this kind) seems to be a natural con-
sequence of basic intuitions underlying the “naive” set theory and re-
ferring to what can be called “Cantor’s absolute””. [Tarski, 1962, p.
124]

145For more on Tarski on finite sets, see Moore [Moore, 1982, pp. 209–213, section 4.2].
146For the notion of a regular ordinal, we need some prior notions. We call two partially ordered

sets X and Y similar (in symbols, X ∼ Y ) if there exists an order-preserving 1-1 correspondence
between them. Next we need the notions of an initial ordinal and cofinality.
Definition α is an initial ordinal iff Ordα&∀β < α(¬α ∼ β).
Definitions α is cofinal with β iff α ≤ β&∃f(f : α → β)&β = Urange(f). The cofinality cf(β)
of β is ∩{α|α is cofinal with β}.
We are now in a position to define the notion of a regular ordinal:
Definition For an initial ordinal κ, κ is regular iff cf(κ) = κ. (See [Tarski, 1938a, p. 360].)
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And Zermelo’s set theory cannot accommodate these intuitions:

“on the basis of the usual axioms of Zermelo the existence of such
numbers, apart from the two smallest of them, 2 and ℵ0, cannot be
established at all.” [Tarski, 1939, p. 557]

Accordingly, Tarski introduced for the first time an axiom that guaranteed the
existence of large cardinals.147 Remarking that the axiomatization of increasingly
large segments of “Cantor’s absolute” is regarded by many as one of main aims of
research in the foundations of set theory, Tarski continues:

“Those who share this attitude are always ready to accept new “con-
struction principles”, new axioms securing the existence of new classes
of “large” cardinals (provided they appear to be consistent with old
axioms).” [Tarski, 1939, p. 557]

Tarski’s Axiom of Inaccessible Cardinals was first presented in [Tarski, 1938a, p.
375]. Tarski’s formulation was based on a technical characterization of the strongly
inaccessible cardinals (drawn from [Tarski, 1938a, Theorem 21]). In [1939], Tarski
replaced it by a more natural version:

For every set N there exists a set M with the following properties:

(i) N is equipollent to a subset of M .148

(ii) the set of subsets of M which are not equipollent to M (i.e. the
set {x|x ⊆M&x < M)149 is equipollent to M .

(iii) there is no set P such that P ’s power set is equipollent to M . (See
[Tarski, 1939, p. 558].)

Either version of the Axiom of Inaccessible Sets says, in effect, that for any set
there is a larger set whose cardinal number is strongly inaccessible. The axiom
“assures the existence of inaccessible numbers as large as we please” [Tarski, 1939,
p. 558]. Moroever, the axiom has “great deductive power”:

“If it is included in Zermelo’s or Zermelo-Fraenkel’s axiom-system this
axiom brings with it a great simplification and reduction of the sys-
tem; and, be it noted, the axiom of choice then becomes a provable
theorem.” [Tarski, 1939, p. 557]

In a later series of papers [1943; 1957a; 1958a; 1958b; 1961a; 1962; 1964], Tarski
investigated a family of problems concerning inaccessible cardinals. These prob-
lems share the same structure. The form of each problem is this: to determine
147Compare the introduction of the Axiom of Replacement to guarantee the existence of certain

intuitive sets — for example, the denumerable set {Z0, PZ0, PPZ0, . . . }, where Z0 is the set of
positive integers and P is the power set operation (see [Skolem, 1922], in [van Heijenoort, 1967,
pp. 296–7]).
148Two sets are equipollent iff there is a 1-1 correspondence between them.
149A < B iff there is a set C such that A is equipollent to C and C ⊂ B.
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the class of all the (infinite) cardinals that have a given property P , where it is
known that ℵ0does not have P , and that the accessible cardinals do. The problem
reduces to this: which of the inaccessible cardinals, if any, have P?

For example, one problem examined in [Tarski, 1962] is the compactness problem
for predicate logics with infinitely long formulas.150 Let Lω be ordinary predicate
logic. For any regular cardinal α let Lα be the logical system that differs from Lω

in having α different variables, infinitary operations analogous to ordinary disjunc-
tion and conjunction, and new versions of universal and existential quantification
adjusted to the infinitary setting.151 The compactness problem for logics Lα is
the problem of determining those cardinals for which the following compactness
theorem holds:

If S is any set of sentences in Lα, and if every subset of S with power
< α has a model, then S also has a model.

That is, a cardinal α has the property P in the present case if the compactness
theorem holds for α. If so, α is a compact cardinal ; otherwise it is incompact.
Now ω is compact, while all the accessible cardinals are incompact. What about
the inaccessible cardinals? Here the problem about inaccessible cardinals has a
metamathematical or metalogical setting. Tarski’s student Hanf proved that a very
large class of inaccessible cardinals are incompact.152 Consider an arrangement
of all the inaccessible cardinals in a transfinite increasing sequence θ0, θ1, . . . θi,
. . . for ordinals 0, 1, . . . i, . . .. Hanf proved that every cardinal α of the form α = θi

with 0 < i < α is incompact.
In [Tarski, 1962] Tarski used this metamathematical result of Hanf’s to estab-

lish certain other properties of this large class of inaccessible cardinals. Tarski
still regarded the metamathematical approach as powerful and intuitive, even for
results in pure set theory.153 Referring back to [Tarski, 1962], Tarski and Keisler
later wrote:

“The results we have mentioned concerning large classes of inaccessible
cardinals were originally obtained with the essential help of metamath-
ematical (model-theoretic) methods. These methods still provide the
intuitively and deductively simplest approach of the topic in its full
generality. In our opinion this circumstance provides new and signif-
icant evidence of the power of metamathematics as a tool in purely
mathematical research, and at the same time does not detract in the
least from the value of the results obtained.” [Tarski, 1964, p. 130]

Nevertheless in [Tarski, 1964] Tarski and Keisler undertake a purely mathematical
(and very extensive) treatment of the topics discussed in [Tarski, 1962], motivated

150These logics are briefly discussed by Tarski in [1958a].
151For a full description see, for example, [Tarski, 1962, pp. 116–7].
152[Hanf, 1963–4].
153Work of Tarski’s that adopts the metamathematical approach to the present family of prob-

lems are [Tarski, 1958a] (with D. Scott), [Tarski, 1961a; Tarski, 1961b]. See also [Keisler, 1962].
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to some extent “by some (irrational) inclination toward puritanism in methods”
[Tarski, 1964, p. 130].154

At the end of [1962], Tarski observes that the problems he has treated remain
open only for the smallest inaccessible cardinal that is not incompact, and beyond.
If there is no such cardinal, the problems are fully disposed of. And Tarski reports
that

“we do not know any example of a cardinal α > ω which would possess
a ”constructive characterization” (in some very general and rather loose
sense of this term) and of which we could not prove that it is incompact
. . . ” [Tarski, 1962, p. 119]

So should we add an axiom to the effect that there are no such cardinals? Only
if we are willing to compromise the study of “Cantor’s absolute”, which Tarski
certainly was not. So we should be prepared to accept large cardinal axioms, but
not prepared to accept

“any axioms precluding the existence of [large] cardinals — unless this
is done on a strictly temporary basis, for the restricted purpose of fa-
cilitating the metamathematical discussion of some axiomatic systems
of set theory.” [Tarski, 1962, p. 124]

8.3 The algebraization of set theory

We turn first to Tarski’s book Cardinal Algebras [Tarski, 1949f], published in 1949
but conceived some twenty years earlier. It deals with cardinal arithmetic, in
particular cardinal addition. Tarski distinguishes two types of results in cardinal
arithmetic, those that rely on the Axiom of Choice, and those, more constructive
in nature, that mostly do not. In [Tarski, 1949f], Tarski investigates results of the
second type that concern cardinal addition. Tarski establishes that all of these
results can be derived within the framework of so-called cardinal algebras, which
satisfy just a small number of laws or postulates. Moreover, these laws apply not
only to cardinal arithmetic, but also to various other mathematical systems. So
cardinal algebras form a simple framework within which many results from many
different systems are forthcoming.

A cardinal algebra is an ordered triple A = 〈A,+,Σ〉 satisfying certain postu-
lates. A is a set of arbitrary elements, + is a 2-place operation, and Σ an operation
on infinite sequences (intuitively, Σ is infinite addition). Postulates I and II are
respectively the closure of A under + and the closure of A under Σ. Postulate
III is the associative postulate:

∑
i<∞ ai = a0 +

∑
i<∞ ai+1. Postulate IV is the

commutative-associative postulate:
∑

i<∞(ai + bi) =
∑

i<∞ ai +
∑

i<∞ bi. Postu-
late V is the zero postulate: there is an element z in A such that a+ z = z+a = a

154Tarski [1962] and Tarski and Keisler [1964] inspired a great deal of research on measurable
cardinals and ultraproducts (see for example [Chang and Keisler, 1973, Ch. 4.2], and for some
historical notes, pp. 520–1).
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for every a ∈ A. Postulates VI and VII are the ones characteristic of cardinal alge-
bras. Postulate VI is the refinement postulate: if a+ b =

∑
i<∞ ci then there are

ai and bi such that a =
∑

i<∞ ai, b =
∑

i<∞ bi, and cn = an + bn. Postulate VII
is the remainder (or infinite chain) postulate: if an = bn + an+1, for n = 0, 1, 2, . . .
then there is an element c ∈ A such that an = c + bn+i for n = 0, 1, 2, . . .. (See
[Tarski, 1949f, pp. 3–4].) It is straightforward to check that the cardinal num-
bers with the operations of binary and infinite addition form a cardinal algebra.
The first part of [Tarski, 1949f] develops the arithmetic of cardinal algebras. (The
second part extends these results to a wider class of algebraic systems, and exam-
ines general methods of constructing cardinal algebras; the third part investigates
the connections between cardinal algebras and related algebraic systems.) Tarski
remarks:

“The idea of an algebraic treatment of [cardinal arithmetic] and cer-
tain aspects and implications of the algebraic development seem to be
essentially new.” (Preface to [Tarski, 1949f, p. xii])

Tarski’s monograph Ordinal Algebras [Tarski, 1956c] does for ordinal addition
what [Tarski, 1949a] did for cardinal addition. As Tarski puts it:

“The method applied in this monograph in the development and pre-
sentation of the theory of ordinal addition is the abstract algebraic
method which was applied for analogous purposes in an earlier work
of the author, [Tarski, 1949f].” (introduction to [Tarski, 1956c, p. 2].)

Tarski remarks that the algebras themselves show some analogies — we find clo-
sure, associative, and remainder postulates. The main difference, according to
Tarski, is that in ordinal algebras the operation + is not commutative; also, the
refinement postulate is replaced by a much stronger statement, the directed re-
finement postulate. (For a full specification of ordinal algebras, and more on these
analogies and differences, see [?, Chapter 1]). As in the case of cardinal addition, Please clarify this reference.
Tarski’s novel algebraic approach to ordinal addition generated, from a very small
base, a large number of results that are not limited to ordinal arithmetic.155

Tarski’s final monograph A Formalization of Set Theory without variables (with
Steven Givant) [Tarski, 1987a] is a wholesale algebraization of set theory. In the
preface, Tarski and Givant announce:

“In this work we shall show that set theory and number theory can be
developed within the framework of a new, different, and very simple
formalism, LX .” (p. xi)

The formalism LX contains no variables, quantifiers, or sentential connectives. The
vocabulary of LX contains seven symbols: two atomic predicates, ı̊ (denoting the
155Both [Jonsson, 1986] and [Levy, 1988] note that Tarski’s work on cardinal and ordinal al-

gebras has been somewhat neglected. Jonsson suggests that Tarski’s thoroughness may in part
explain this, “for he presented the mathematical community with two highly polished and elab-
orate creations, but with relatively few open problems” [Jonsson, 1986, p. 885].
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identity relation between individuals) and E (denoting the membership relation);
four operators, + (Boolean addition), − (Boolean complement), ˘ (conversion —
see 4.2 above), and � (relative product — called ‘;’ in 4.2 above); and a second
identity predicate = (denoting the identity relation between relations). Compound
predicates are formed from the atomic predicates 1 and E using the operators. All
mathematical statements in LX are of the form ‘A = B’, where A and B are
arbitrary predicates.

The deductive apparatus of LX is based upon ten logical axiom schemata (see
[Tarski, 1987a, p. 46]):

(I) A+B = B +A

(II) A+ (B + C) = (A+B) + C

(III) (A− +B)− + (A− +B−)− = A

(IV) A� (B � C) = (A�B) � C

(V) (A+B) � C = A� C +B � C

(VI) A� ı̊ = A

(VII) A˘˘ = A

(VIII) (A+B)̆ = Ă+ B̆

(IX) (A�B)̆ = B̆ � Ă

(X) Ă� (A�B)− +B− = B−.

These axioms are the analogues of the equational postulates for abstract relation
algebras essentially given in Chin–Tarski [Tarski, 1951a, on p. 344]. There is just
one rule of inference, the rule of replacing equals by equals, familiar from high
school algebra. Tarski and Givant write that

“LX proves adequate for the formalization of practically all known
systems of set theory, and hence for the development of all of classical
mathematics.” (preface to [Tarski, 1985, p. xii])

Thus set theory can be based entirely on a system which is free of variables and
in which the only formulas are sentences which take the form of equations. (See
[Tarski, 1987a, section 4.6] for the formalizability of systems of set theory in LX .)
The system LX is a direct development of Tarski’s work on the calculus of relations
and relation algebras (see 4.2 above):

“Roughly speaking, the formalism LX that is the central focus of this
work is obtained from Tarski’s equational formalization of the calculus
of relations by introducing the constant E and deleting all variables.”
(preface to [Tarski, 1985, p. xvii])

Givant reports that Tarski died shortly after the manuscript for [Tarski, 1987a]
was completed.
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9 CONCLUDING REMARKS

Tarski wrote twenty monographs and more than one hundred articles, and yet he
published next to nothing about his philosophical views. Even in his work best-
known to philosophers — his work on the concept of truth — Tarski’s philosophical
views are hard to pin down, as we have seen.

In a rare expression of his philosophical standpoint regarding the foundations
of mathematics, Tarski once wrote:

“. . . I may mention that my personal attitude towards this question
agrees in principle with that which has found emphatic expression in
the writings of S. Lesniewski and which I would call intuitionistic for-
malism.” [Tarski, 1930d, p. 62]

But in a footnote added later to this paper (ibid.), Tarski characteristically drew
back from such an unequivocal philosophical statement (“This last statement ex-
presses the views of the author at the time when this article was originally pub-
lished and does not adequately reflect his present attitude”). Mostowski (Tarski’s
first PhD student) reports that Tarski was influenced early on by Kotarbinski’s
“reism”, a nominalist doctrine, and would express sympathy with nominalism in
oral discussions. But as Mostowski points out, this seems to conflict with Tarski’s
constant use of abstract and general notions (consider, for example, Tarski’s whole-
sale acceptance of set theory).156

We can find some brief philosophical remarks in two other pieces of Tarski’s,
both published posthumously. In a letter to Morton White, written in September
1944, Tarski followed what he took to be the Millian view, that logical and math-
ematical truths are, like empirical truths, the results of accumulated experience.
Tarski goes on to say:

“I think I am ready to reject certain logical premisses (axioms) of our
science in exactly the same circumstances in which I am ready to reject
empirical premisses (e.g. physical hypotheses). . . ” [Tarski, 1987b, p.
31]

This was a view that was later to find expression in [White, 1950] and [Quine,
1951], both of whom acknowledge their debt to Tarski. The second posthumous
piece is the paper “What are logical notions?” [Tarski, 1986]. Tarski makes it
clear that he is not after any normative answer to this question, nor any ‘platonic’
answer:

“. . . people speak of catching the proper, true meaning of a notion,
something independent of actual usage, and independent of any nor-
mative proposals, something like the platonic idea behind the notion.
This last approach is so foreign and strange to me that I shall simply
ignore it, for I cannot say anything intelligent on such matters.” (p.
145)

156[Mostowski, 1967, p. 81].
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Instead, Tarski aims to capture a possible use of the term ‘logical notion’, one
that he thinks is in agreement with at least one actual usage of the term. As with
the notions of definability, truth, and logical consequence, Tarski seeks to capture
common usage as far as consistency and rigor allow.157

It is clear that Tarski’s most significant philosophical contributions flow from
his logical and metamathematical work, and not from any overtly philosophical
writings. This is no accident: Tarski held firmly to the view that logical and
mathematical investigations should proceed unhampered by any particular philo-
sophical perspective. For example, as Mostowski emphasizes, Tarski’s unrestricted
use of set theory gave him a mathematical reach that was beyond the adherents to
Hilbert’s formalism or Brouwer’s intuitionism. Tarski thought of himself first and
foremost as a mathematician and a logician, and as a philosopher only in some
secondary sense: “perhaps a philosopher of a sort” [Tarski, 1944, p. 693].

Tarski’s philosophical contributions are to be found in his work on metamath-
ematics, semantics and logic. In the course of more than sixty years of active
research, Tarski articulated concepts and established theorems that have become
standard in modern logic; he ushered in new fields; he helped to construct the very
framework of modern logic. And through generation after generation of his stu-
dents, Tarski’s influence is still felt. In their review of [?], Pogorzelski and SurmaWhich Tarski:24 is this?
write:

“. . . the thing that we find most striking is that there . . . is hardly
another scientist in the history of the exact sciences whose part in the
construction of notions for a large domain of science was as powerful as
the contribution of Tarski to the creation of conceptual apparatus for
logic, metalogic, and even metamathematics. In fact, the conceptual
structure of these disciplines is due to Tarski.”158

Tarski offered an additional way to measure “the value of a man’s work” [Tarski,
1944, p. 693]:

“It seems to me that there is a special domain of very profound and
strong human needs related to scientific research, which are similar in
many ways to aesthetic and perhaps religious needs. And it also seems
to me that the satisfaction of these needs should be considered an
important task of research. Hence, I believe, the question of the value
of any research cannot be adequately answered without taking into
account the intellectual satisfaction which the results of that research
bring to those who understand it and care for it. It may be unpopular
and out-of-date to say - but I do not think that a scientific result
which gives us a better understanding of the world and makes it more
harmonious in our eyes should be held in lower esteem than, say, an

157Tarski’s suggestion concerning logical notions is couched in geometric terms of invariance
under transformations.
158This is the conclusion of [Pogorzelski and Surma, 1969].
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invention which reduces the cost of paving roads, or improves household
plumbing.” [Tarski, 1944, p. 694]
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